Micro-mechanical modelling of single crystal nickel-nase superalloys
Tinga, T.; Brekelmans, W.A.M.; Geers, M.G.D.

Published: 01/01/2006

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Dec. 2018
Micro-mechanical Modelling of Single Crystal Nickel-base Superalloys

T. Tinga¹, W.A.M. Brekelmans², M.G.D. Geers²
¹ National Aerospace Laboratory NLR, Gas Turbines and Structural Integrity Department
² Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
Single crystal nickel-based superalloys are widely used as gas turbine blade materials because of their superior high temperature behaviour. The excellent properties are attributed to the two-phase composite microstructure consisting of a γ matrix containing a large volume fraction of γ’ precipitates (Figure 1a).

Figure 1 As received and degraded superalloy microstructure.

The ability to perform a reliable life assessment is crucial for both gas turbine component design and maintenance. Since the microstructure morphology may change during operation (Figure 1b), a micro-mechanical model was developed to simulate the superalloy mechanical response.

Multi-scale approach
A multi-scale approach is followed to bridge the gap in length scales between the engineering level and microstructural level, see Figure 2b.

Figure 2 a) Microstructural unit cell b) Multi-scale approach.

On the engineering level a Finite Element method is adopted and a microstructural unit cell (Figure 2a) is used to calculate the averaged response for each material point. The unit cell contains 1 precipitate, 3 matrix and 6 double interface regions.

Constitutive behaviour
A strain-gradient crystal plasticity model is used to model the matrix phase constitutive behaviour:

\[\gamma^c = \gamma_0 \left(\frac{\tau_{\text{eff}}}{s^{\gamma}} \right)^m \left(1 - \exp \left(-\frac{\tau_{\text{eff}}}{\varepsilon^*} \right) \right) \text{sign} \left(\frac{\tau_{\text{eff}}}{\varepsilon^*} \right) \]

A similar relation is used for the precipitate phase, describing two precipitate deformation mechanisms:

\[\gamma^p = A \rho_{\text{GND,min}} \int_{\text{dis}} \left(1 - \exp \left(-\frac{\tau_{\text{eff}}}{s^{\gamma'}} \right) \right) \rho_{\text{GND,min}} \int_{\text{climb}} \left(1 - \exp \left(-\frac{\tau_{\text{eff}}}{\varepsilon^*} \right) \right) \]

\[\tau_{\text{eff}} = \text{combination of applied stress, lattice misfit stress and dislocation induced back stress} \]

\[s^{\gamma'} = \text{slip resistance (dislocation density)} \]

\[\varepsilon^* = \text{Orowan threshold stress (particle spacing)} \]

\[\rho_{\text{GND,min}} = \text{interface dislocation density} \]

Results
Model parameters were determined for alloy CMSX-4 and material behaviour was predicted (Figure 3, 4).