The new technology of condensed rotational separation

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
The New Technology of Condensed Rotational Separation

Bert Brouwers
Erik van Kemenade
www.mu-separation.com

Contents

1 Principles of CRS and RPS
2 RPS designs
3 CRS for contaminated natural gas
4 CRS for CO2 removal from flue gases
5 CRS for CO2 removal from syngases
6 Conclusions
Innovation 1:
Fast cooling of mixture into the two phase region by expansion through J-T valve or turbine.
One component becomes a mist of fine droplets.

Innovation 2:
The fine droplets are separated by the Rotational Particle Separator.
The rotational phase separator (RPS) is a cyclonic device wherein a rotating element is placed. The rotating element is a simple cylinder consisting of a very large number of axial channels or pipes of a few millimeters in diameter.

The cylinder is freely mounted in an enclosed stationary housing. Rotation is generated by the tangential velocity of the gas entering the device.

The micron-sized droplets are centrifuged to form a liquid film at the channel-wall. The film is ripped off at the exit of the channel in the form of droplets; typically 50 micrometer or larger. These droplets are separated according the working principles of ordinary axial cyclones.

Large droplets are centrifugated to the wall in the inlet part of the device. They leave via outlet 1. The fine droplets (1 to 10 micrometer) enter the channels of the RPS, coagulate, leave the channels as large droplets and leave the RPS via outlet 2.
The RPS offers economic advantages in all processes where demisters are needed:

- Solvent recovery
- Evaporators
- Steam drums
- Knock-out pots
- Inert gas scrubbers
- MSF/MED desalination
- Sulfuric acid absorbers and dryers
- Turbo-expander suction drums
- Dew-point separators
- Compressor suction drums, Glycol dehydration

The RPS is particularly applicable to systems where reduction in size / weight is advantageous such as offshore production. The rotating equipment used in CRS eliminates the need for high structures on deck and is not affected by the motion of the platform.

In i.e. solvent and LNG plants the RPS improves efficiency by reducing liquid carry-over and equipment volume.

The RPS improves efficiency and reduces size in all processes where droplets < 10 micrometer occur.

The RPS enables the use of efficient high pressure expansion processes for large throughput plants.
The RPS as an efficient and compact demister allows new processes such as Condensed Rotational Separation for:

- Removing H2S/CO2 from natural gas
- CO2 removal from flue gases
- H2 production from syngas

The potential of the applications is assessed on two criteria:

- Energy costs (=OPEX)
- Volume (=residence time = CAPEX)

In CRS the gas mixture is chilled by a combination of cooling and expansion to a point in the phase diagram where the purity of the gas is maximal (A).
3 CRS for contaminated natural gas

The purity of the gas is independent of the feed concentration

The liquid still contains a considerable amount of methane

The liquid stream is subsequently heated and expanded to a point of maximum purity of liquid contaminant (B).

The gas from the second flash is compressed and refed to the first stage.
3 CRS for contaminated natural gas

The liquid is also near the maximal value

Wasit gas plant Saudi Arabia

<table>
<thead>
<tr>
<th>Condensed Rotational Separation</th>
<th>98.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>produced gas purity [%mole]</td>
<td>98.5</td>
</tr>
<tr>
<td>equipment size [kW]</td>
<td>0.03</td>
</tr>
<tr>
<td>energy costs [% incoming heating value]</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Amine treatment

<table>
<thead>
<tr>
<th>produced gas purity [%mole]</th>
<th>99.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>equipment size [kW]</td>
<td>1</td>
</tr>
<tr>
<td>energy costs [% incoming heating value]</td>
<td>3.8</td>
</tr>
</tbody>
</table>

CRS Performance Summary:

- Gas purity:
 - contaminant CO2 + H2S: reduction to ~1%
 - contaminant H2S only: reduction to <1% but not ppm
 - contaminant CO2 only: reduction to 12-15% independent of incoming concentration
- Liquid (H2S/CO2) purity: 95 - 99%
- Methane recovery: 90.0% - 99%
- Energy consumption: 1% - 3% of methane heating value
- Residence time 0.1 s hence compact installation

CRS facilitates profitable exploitation of gas fields with contamination levels up to 70%
4 CRS for CO2 removal from flue gas

Requires enrichment of CO2 in the feed stream to only 50% (i.e. by membranes) for a CO2 recovery of 70%.

The energy penalty of CRS is only slightly higher than the energy required to compress gaseous CO2: CRS consumes little extra energy.

The advantage is that the capital and operation costs are relaxed on the enrichment step prior to CRS.

Net result: Size of installation and energy consumption because of CO2 capture become less when CRS is introduced.

CRS becomes more economical with increasing CO2 content in the flue gas (cement production, steel works etc)
5 CRS for CO2 removal from syngases

Two sequential steps:
1) Cooling of syngas, leaving the coal gasifier, to -54°C. Part of the CO2 condenses into droplets.
2) Separation of CO2 droplets from the syngas stream with a Rotational Phase Separator (RPS).

Most recent results:
Condensed Rotational Separation for CO2 removal from syngases

Erik van Kemenade
Track 2-2
Semi–cryogenic separation offers a large energy advantage compared to absorption techniques.

Condensed Rotational Separation adds a large size advantage over distillation columns by using the Rotational Particle Separator.

The Rotational Particle Separator is available to industry as a very efficient mist eliminator.

Condensed Rotational Separation (CRS): ready for field test in upgrading H2S/CO2 contaminated natural gas fields
CO2 removal from flue gases
CO2 removal in H2 production

Can CRS advance your process?

Thanks for your attention

This presentation and much more is available on:

www.mu-separation.com