Characterization of microphenomena in composite materials
Meurs, P.F.M.; Schreurs, P.J.G.; Peijs, A.A.J.M.

Published: 01/01/1996

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 04. Jan. 2019
Characterization of Microphenomena in Composite Materials

P. Meurs, P. Schreurs, T. Peijs
Eindhoven University of Technology, Section Materials Technology,
P.O. Box 513, NL 5600 MB Eindhoven

INTRODUCTION

- numerical-experimental method
- field quantities: displacements
- transversely loaded composites
- parameter estimation

PARAMETER ESTIMATION

[Diagram: experiment → measured displacements → parameter adjustment → residuals → computed displacements]

DISPLACEMENT MARKERS

Markers created by the electron beam of a SEM:

1) raised dots on surface of specimen:

2) black spots on surface of specimen:

→ experiments in SEM

Microphenomena:

- fibre coatings
- interphase conditions
- interfacial normal strength

FIBRE COATINGS

- single fibre model composites
- uncoated and coated fibres ($E_c = 0.5E_m$)

Displacements ($\times 5$):

- $F = 158$ N
- $F = 257$ N

Finite Element Modelling

Parameter Estimations:

- average values: $\bar{E}_{unc} = 0.6$ GPa, $\bar{E}_c = 0.2$ GPa

INTERPHASE CONDITIONS

- parameter: E_i
- high V_f composites
- interphase: 1 μm
- isotropic

Parameter Estimations:

- average value: $\bar{E}_i = 0.5$ GPa

INTERFACIAL NORMAL STRENGTH

- C-Fibre: surface treatment 0-200%
- stress state at debonding gives INS:

CONCLUSION

- method is suitable for identification of microphenomena