Mathematical models in aid of diagnostics and treatment of heart failure
Groenenberg, I.; Bovendeerd, P.H.M.; de Mol, B.A.J.M.; van de Vosse, F.N.

Published: 01/01/2002

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Dec. 2018
Introduction

Heart failure is "a complex of complaints and symptoms due to an inadequate pump function of the heart" [1]. Roughly 1 to 2 percent of the Western population suffers from a failing heart. And every year another 0.5 to 1 percent will be affected. Valve stenosis is one of the causes of heart failure. After initial favorable adaptive growth (hypertrophy), the heart muscle may finally fail.

![Figure 1: Concentric hypertrophy (left) and dilated hypertrophy (right) after valve stenosis compared to a normal heart wall (center).](image1)

Diagnosis and Treatment

For the diagnosis of heart failure a lot of diagnostic tools are available. At the moment the most important ones are the electrocardiogram and the echocardiogram (fig. 2). In spite of these tools the selection of the optimal (surgical) treatment remains difficult, just like the prognosis after treatment.

![Figure 2: Left: apical 4-chamber view obtained with echocardiography. Middle: Doppler blood velocity measurements. Right: Quantities derived from the echo system.](image2)

Objective

The goal of this project is to enhance the diagnostic toolbox for heart failure by combining existing diagnostic information with a mathematical model of heart and circulation.

![Figure 3: Left: a schematic representation of the complete mathematical model. Right: the ventricles consist of one fiber [2].](image3)

Method

The mathematical model describes the interaction between heart and circulation (fig. 3). The mechanical behavior of the ventricle is described by a one-fiber model, because the ventricles consist of one specially folded muscle band (fig. 3). The model translates clinical measurements (wall volume V_w, left ventricular pressure P_{lv} and volume V_{lv}) into muscle fiber stress σ_f and strain ϵ_f, according to [3]:

\[
\sigma_f = P_{lv}(1 + 3\frac{V_{lv}}{V_w}) \quad (1)
\]

\[
\epsilon_f = \frac{1}{3}\ln(1 + \frac{V_{lv}}{V_w}) \quad (2)
\]

Moreover, from the course of stress and strain, myocardial material properties are derived. These quantities will be the input for an adaptation process to predict hypertrophy.

The Case of Aortic Stenosis

Patients with a severe aortic stenosis (valve opening of less than 1cm^2), who are recommended for valve replacement, cannot be told whether or not the heart muscle will return to 'normal' (geometry) after the intervention.

![Figure 4: Results of a simulation.](image4)

First simulations of an aortic stenosis (valve opening 0.75 cm2 versus 2.5 cm2 for normal) show the increase of cavity pressure and the decrease of stroke volume (fig. 4). These changes are reflected in the stress strain relation (fig. 4). Future simulations will be able to predict the future state of the heart with and without intervention.

Conclusion

A strategy has been elaborated, in which mathematical models can support diagnostics and treatment selection in heart failure.

References:

[1] KWALITEITSCINTITUUT VOOR DE GEZONDHEIDSZORG CBO: Chronish Hart- falen, conceptrichtlijn
[2] F. TORRENT-GUASP: La mecánica agonista-antagonista de los segmentos descendente y ascendente de la banda miocárdica ventricular

PO Box 513, 5600 MB Eindhoven, the Netherlands