Ultrafast atomic layer deposition of alumina layers for solar cell passivation

Citation for published version (APA):

DOI:
10.1149/1.3610994

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 18. May. 2020
Ultrafast Atomic Layer Deposition of Alumina Layers for Solar Cell Passivation

P. Poodt,a V. Tiba,a F. Werner,b J. Schmidt,b A. Vermeer,c and F. Roozeboom a,d,*

aTNO, 5600 HE Eindhoven, The Netherlands
bInstitute for Solar Energy Research Hamelin, D-31860 Emmerthal, Germany
cSoLayTec, 5652 AM Eindhoven, The Netherlands
dDepartment of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

An ultrafast atomic layer deposition technique is presented, based on the spatial separation of the half-reactions, by which alumina layers can be deposited with deposition rates of more than 1 nm/s. The deposition rate is limited by the water half-reaction, for which a kinetic model has been developed. The alumina layers showed excellent passivation of silicon wafers for solar cell applications. Based on this concept, a high-throughput ALD deposition tool is being developed targeting throughput numbers of up to 3000 wafers/hr.

Spatial ALD as an enabling technology for cost-effective passivation of crystalline silicon solar cells has been reported earlier by us11,12 and others.13 In this paper, we further examine the possibilities of spatial ALD regarding industrialization.

Experimental

A proof-of-principle reactor was constructed, where the separate reaction zones’ inlets are incorporated in a round reactor head, surrounded and separated by gas bearing planes (Fig. 1b). The reactor head is mounted on top of a rotating substrate table holding the substrate as illustrated in Fig. 1c. The experimental parameters are listed in Table I and described in more detail in Ref. 6. Trimethyl aluminum (TMA) and water are used as reactants. All depositions were performed at 200°C at atmospheric pressure.

Results

With the experimental set-up, a 3 cm wide ring-shaped track of Al2O3 was deposited, corresponding to the width and position of the deposition inlets (Fig. 2). The color of the layer is caused by interference effects, where the blue color corresponds to a thickness of ~100 nm. Layers with thicknesses of up to 500 nm were deposited, showing an excellent linear relation between the layer thickness and the total number of rotations. The concept was tested successfully up to a rotational frequency of 600 rpm. Higher frequencies could not be tested due to mechanical limits of the set-up. With a growth per cycle round 0.1 nm/cycle, this results in deposition rates in the order of 60 nm/min. The layer thickness is homogeneous along the width of the deposition track for all rotational frequencies (~5% inhomogeneity can be achieved). This is proof of having a true ALD deposition regime with little or no CVD component. Prolonged experimental runs showed no accumulated parasitic deposition, thus indicating sufficient separation of the precursor by the gas bearing.

Next, the GPC as a function of rotation frequency was measured, while keeping the deposition temperature, gas- and precursor flows constant (Fig. 3). The GPC decreases slightly with increasing rotation frequency, from ~0.13 nm/cycle at 60 rpm to ~0.10 nm/cycle at 600 rpm. The shorter precursor exposure times at higher frequencies lead to an incomplete saturation of the substrate. By increasing the precursor partial pressure it should be possible to increase the level of saturation. The standard TMA partial pressure being ~1 mbar, neither a 2.5 times higher TMA partial pressure (~2.5 mbar), nor half the TMA partial pressure (~0.5 mbar) showed any effect on the GPC at frequencies of 600 rpm. In contrast, the water partial pressure (standard value ~124 mbar) has a significant effect on the saturation behavior, and thus the GPC. (Fig. 3), with a GPC of 0.095 nm/cycle at half the standard water partial pressure (~62 mbar) and 0.11 nm/cycle at a ~3 times higher water partial pressure

* Electrochemical Society Active Member.
E-mail: paul.poodt@tno.nl

Manuscript submitted January 6, 2011; revised manuscript received June 22, 2011. Published July 20, 2011. This was Paper 1438 presented at the Las Vegas, Nevada, Meeting of the Society, October 10–15, 2010.

Energy production from the sun will require a Japanese production rate of 1000 wafers/hr. This comes within reach when using spatial ALD.
adsorbed at the Al2O3 interface. Such a reaction can be described by Eley-Rideal kinetics. The rate equation is then given by

\[\frac{dN_{Me}}{dt} = -kN_{Me}(t)p_w \]

(\(\approx 340 \text{ mbar} \)). It can thus be concluded that the water half-reaction is the rate limiting step in the ALD reaction.

A kinetic model has been developed to describe the spatial ALD reaction between TMA and water. As the water half-reaction is rate limiting, modeling this step would give a sufficient description of the spatial ALD process.

Kinetic model—After each TMA dose, and before the water dose, the surface is covered by the unreacted methyl groups of the adsorbed TMA species and remaining unreacted hydroxyl groups. The growth per cycle is determined by the half-reaction between the growth of methyl groups at the interface and the incoming water molecules as given by

\[\text{TiO}_2 + \text{H}_2\text{O} \rightarrow \text{TiOH} + \text{O}_2 \]

with \(\text{TiO}_2 \) and \(\text{OH} \) being the methyl and hydroxyl groups adsorbed at the Al2O3 interface. Such a reaction can be described by Eley-Rideal kinetics. The rate equation is then given by

\[\frac{\partial[\text{CH}_3]}{\partial t} = -k[\text{CH}_3][\text{H}_2\text{O}] \text{ or } \frac{\partial N_{Me}(t)}{\partial t} = -kN_{Me}(t)p_w \]

where \(N_{Me}(t) \) is the time-varying methyl group concentration, \(k \) is the rate constant and \(p_w \) is the water partial pressure. It is assumed

Table I. Experimental parameters proof-of-principle reactor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{deposition}})</td>
<td>50–350°C</td>
</tr>
<tr>
<td>Total flow TMA injector</td>
<td>1 slm</td>
</tr>
<tr>
<td>Total flow H₂O injector</td>
<td>1 slm</td>
</tr>
<tr>
<td>Gas bearing pressure</td>
<td>5 bar</td>
</tr>
<tr>
<td>Gap substrate–gas bearing gap</td>
<td>20 µm</td>
</tr>
<tr>
<td>Gap substrate–TMA/H₂O injector</td>
<td>100 µm</td>
</tr>
<tr>
<td>Rotation frequency</td>
<td>1–5 mbar</td>
</tr>
<tr>
<td>TMA partial pressure</td>
<td>50–350 mbar</td>
</tr>
<tr>
<td>H₂O partial pressure</td>
<td>Atmospheric</td>
</tr>
<tr>
<td>Total pressure</td>
<td>Reactor diameter</td>
</tr>
<tr>
<td>Deposition track width</td>
<td>15 cm</td>
</tr>
<tr>
<td>Gas bearing pressure</td>
<td>15 cm</td>
</tr>
</tbody>
</table>

Figure 2. (Color online) Photograph of a 150-mm silicon wafer with a 3 cm wide track of 100 nm Al₂O₃ deposited by spatial ALD. The insert shows a magnification of the deposited film, where uniformity of the color indicates thickness uniformity.
pressure. Nevertheless, the model gives an adequate description of the experimental data. From the fit to the data, a maximum obtainable rotation frequency can be estimated. Note, that from the fit a maximum GPC of 0.13 nm/cycle can be obtained at high \(p_w t \) values, so at very low rotation frequencies and very high water vapor pressures.

A typical value of \(p_w t \) is 1, corresponding to a GPC of 0.12 nm/cycle. In principle the maximum possible water vapor pressure is 1000 mbar (steam). As such, the maximum rotation frequency that can be used is 1000 rpm. This would result in a theoretical maximum deposition rate of 2 nm/s. Higher deposition rates are possible when undersaturated half-reactions are allowed. However, this might also influence the quality of the deposited films.

Using high partial pressures and high rotation frequencies might be challenging from a practical point of view. A more straightforward approach to achieve high deposition rates is to use more precursors injectors in-line, to obtain more than one cycle per rotation.

Spatial ALD for surface passivation of Si solar cells

The level of surface passivation is quantified by the effective surface recombination velocity. Assuming an infinite bulk lifetime, the upper limit of the effective surface recombination velocity \(S_{eff} \) can be calculated by

\[
S_{eff} \leq \frac{d}{2 \tau_{eff}}
\]

with \(d \) the substrate thickness and \(\tau_{eff} \) the effective lifetime. Figure 5 shows the effective lifetimes \(\tau_{eff} \) measured as a function of the injection density \(\Delta n \) for 1.3 cm p-type float-zone silicon (FZ-Si) wafers passivated using Al\(_2\)O\(_3\) deposited by plasma-assisted, thermal and spatial ALD (deposition temperature 200°C, rotation frequency 120 rpm). Lifetimes were measured by the photoconductance decay (PCD) method using a Sinton lifetime tester. All Al\(_2\)O\(_3\) films received a post-deposition anneal at (400 ± 50)°C for ~15 min to activate the surface passivation. As can be seen from Fig. 5, all three ALD techniques result in Al\(_2\)O\(_3\) films of outstanding surface passivation quality, which shows an extremely weak injection dependence over the complete relevant injection range between \(10^{13} \) and \(10^{15} \) cm\(^{-3}\). Most importantly, it can be deduced from Fig. 5 that both traditional thermal ALD as well as spatial ALD provide Al\(_2\)O\(_3\) films with an extremely high level of surface passivation, as indicated by lifetimes of 2 ms, corresponding to an upper surface recombination velocity (SRV) limit of \(S_{eff} \leq 7 \) cm/s, for both techniques and a practically negligible injection dependence over the relevant injection range. Furthermore, excellent firing stabilities of the alumina films have been observed. It is quite remarkable that spatial ALD with its high deposition rates produces exactly the same excellent level of surface passivation as the slow (<2 nm/min) thermal ALD. Although further optimization is required, our preliminary results show already that Al\(_2\)O\(_3\) deposited by spatial ALD combines excellent surface passivation with high deposition rates.

It goes without saying that surface passivation of square silicon solar cell wafers requires uniform deposition of Al\(_2\)O\(_3\) over the entire wafer area, rather than a circular track. Thus a rotational spatial ALD reactor cannot be used. For this reason, a reciprocating spatial ALD tool has been developed capable of processing full wafers at high throughput numbers (Fig. 6). Inside this tool, substrates are moved back and forth all the way underneath a spatial ALD injector with the same width as the substrate. By using a single gas bearing (below and above the substrate, Fig. 6a), the substrate will float virtually frictionless underneath the injector zones. By pulsing flows of inert gas in the substrate drives next to the injector (Fig. 6b), the wafer can be moved back and forth without utilizing carriers. The wafers are centered by flows of gas perpendicular to the movement direction, on both sides of the wafer (Fig. 6b). When a deposition is finished, the substrate will be transported away from the injector head and a new substrate comes in immediately. A significant benefit of using a single injector with a reciprocating wafer is that the

Figure 3. The growth per cycle measured as a function of rotation frequency with a water vapor pressure \(p_w t \) of 124 mbar \((\square) \), 62 mbar \((\triangle) \) and 340 mbar \((\bigcirc) \).

Figure 4. The growth per cycle measured as a function of \(p_w t \) (the water partial pressure divided by the rotation frequency). The data are fitted according to Eq. 7, with \(A = 0.13 \) nm/cycle, \(B = 0.0938 \) nm/cycle and \(k = 1.72 \) mbar\(^{-1}\) min\(^{-1}\).

Figure 5. (Color online) Effective lifetimes and effective surface recombination velocities for Si-wafers with Al\(_2\)O\(_3\) passivation deposited by spatial ALD. (a) 30 nm Al\(_2\)O\(_3\) on a 180 μm n-type FZ Si wafer (2–3 Ω cm) and (b) 10 nm Al\(_2\)O\(_3\) deposited on a 130 μm p-type CZ Si wafer (1–3 Ω cm, bulk lifetime 300–500 μs).
film thickness is tuned by simply selecting the number of passages of the substrate.

Also here, the gas bearing gaps on both sides of the floating wafer should be very small to prevent cross-reactions between the precursors. Typically, a gap in the range of 3–15 μm between the substrate and the gas bearing (above and below) is sufficient to ensure separation between the precursors. However, the gaps should be large enough to account for the thickness variations of the substrates. The gap in the TMA- and water half-reaction zones can be larger than the bearing gap, typically up to 100 μm.

The total deposition rate depends on the number of TMA and water slots that are integrated in the injector head, in combination with the number of passages of the substrate per second. Currently, each substrate passes 4 times per second through the injector head containing a single TMA slot, resulting in an effective deposition rate of ~0.4 nm/s. This allows for throughput numbers of the order of 100 wafers/h, based on a passivation layer thickness of 10 nm. However, it is possible to integrate two or three TMA and water half-reaction zones, thus increasing the throughput accordingly. With this tool, homogeneous deposits (2–4% thickness variation) with low effective recombination velocities are obtained over the entire area of the wafer, with minimal backside deposition (~30 cm/s for 180 μm p-type CZ wafers, 1–5 Ω cm, but highly dependant on type, quality, pre- and post-treatment of the Si wafer).

Further upscaling to industrial scale can be achieved by incorporating 10 or up to 15 injectors in parallel use, as a modular system (Fig. 6c). In this way throughputs of more then 3000 wafers/h can be obtained while keeping a relatively small footprint.

Conclusions

We have demonstrated that by spatially separated ALD in combination with gas bearing technology, high-quality Al₂O₃ layers can be deposited at deposition rates of at least 1.2 nm/s. With these films, very low effective surface recombination velocities were obtained, showing excellent surface passivation. This disruptive and high-throughput method has great potential in many other large-scale applications. Other materials than Al₂O₃ will further expand this potential. Currently, an in-line industrial spatial ALD tool for passivating square silicon solar cells is being developed, aiming at throughput numbers of 3000 wafers/h as a lead to cost-effective, next generation production tools.

Acknowledgments

The authors would like to thank J. Smeltink and S. Broers for reactor design, construction and technical assistance. The project supervision by A. van Asten en R. Görtzen and the co-inventorship by K. Spee, D. Maas, B. van Someren, A. Lexmond and A. Duisterwinkel are gratefully acknowledged.

References