Mechanical properties of polymer / clay nanocomposites

Sarkissov, A.U.; Fischer, H.R.; Meijer, H.E.H.

Published: 01/01/2001

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 06. Dec. 2018
Mechanical Properties of Polymer / Clay Nanocomposites

A. Sarkissov, H. R. Fischer*, H. E. H. Meijer
Eindhoven University of technology, Department of Mechanical Engineering
* TNO Institute of Applied Physics

Introduction
Hybrid inorganic/organic nanocomposites based on polymers reinforced with silicate minerals (clay) can exhibit marked improvement in properties like stiffness, barrier, thermal stability, flame retardance at low filler content of approximately 5wt%. The goal of this project is to investigate the micro mechanical behaviour of these materials and link it with their macroscopic properties.

Materials and Methods
Clays are naturally occurring highly crystalline hydrophilic minerals. Two types of clays were used as a reinforcing elements for the PE and PP matrix.

- Layered silicates

 - High aspect ratio platelets
 - Surface area ~ 800m²/gr.
 - Negatively charged layers balanced by alkali cations

- Fibrous clay minerals

 - High aspect ratio
 - Hollow structure

Nanocomposite preparation

Clays are rendered organophilic through ion exchange reactions with organic cations and subsequently dispersed into polymer matrix via extrusion melt mixing. In the case clay platelets three types of structures are obtainable depending on the thermodynamic interactions between the matrix and clay layers:

- Phase separation
- Intercalation
- Exfoliation

Using surface modifying agents for the clay to promote more favourable clay-polymer interactions.

For the PP matrix clay was modified using PEO-EBE block copolymer, for the PE based nanocomposite PE-MAS was used as a modifier.

Results

- Layered clay minerals

 PE / Somasif 5%

Clay platelets are homogeneously dispersed

<table>
<thead>
<tr>
<th>Material</th>
<th>E-modulus, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PE</td>
<td>4.20</td>
</tr>
<tr>
<td>PE/clay 5%</td>
<td>7.10</td>
</tr>
</tbody>
</table>

- PP / Montmorillonie 5%

In-situ tensile testing under ESEM shows formation of crazes around clay tactoids

<table>
<thead>
<tr>
<th>Material</th>
<th>Impact Energy, kJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PP</td>
<td>4.9</td>
</tr>
<tr>
<td>PP/clay 5%</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Future work

- Further investigation of the morphology, crystallisation and structure development of polymer / clay nanocomposites
- Investigation of the deformation behaviour of polymer/clay nanocomposites by means of in-situ SAXS, WAXS, ESEM, AFM

/ department of mechanical engineering

PO Box 513, 5600 MB Eindhoven, the Netherlands