Recent sawtooth studies on the Tokamak configuration variable

Published in: Proceedings of the 53rd Annual Meeting of the APS Division of Plasma Physics, November 14-18, 2011, Salt Lake City, USA

Published: 01/01/2011

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Recent Sawtooth Studies on the Tokamak a Configuration Variable1 DUCCIO TESTA, CRPP, GUSTAVO CANAL, STEFANO CODA, BASIL DUVAL, LUCIA FEDERSPIEL, FEDERICO FELICI, SILVANO GNESIN, TIMOTHY GOODMAN, JONATHAN GRAVES, FEDERICO HALPERN, MIHO JANVIER, JOSEF KAMLEITNER, ALEXANDER KARPUSHOV, DOOHYUN KIM, KYUNGJIN KIM, ANTOINE POCHELON, HOLGER REIMERDES, OLIVIER SAUTER, TCV TEAM — We report recent studies performed on the Tokamak a Configuration Variable on the sawtooth instability and its relation with Tearing Modes (TM). The primary long-term aim of this work is to provide understanding of the relation between sawteeth and TMs so that reliable real-time schemes can be devised for combined sawtooth and TM control in burning plasma experiments such as ITER. Hence, our work has focused on studying: dynamical relation between sawtooth crash and subsequent onset of TMs, sometimes leading to disruptions, as a function of the plasma shape and current profile; coupling of the low m/n modes generated at the sawtooth crash; dynamical evolution of the toroidal rotation during sawteeth; real-time control techniques for the sawtooth period using localized electron cyclotron heating and current drive; distribution function of high energy electrons generated at the sawtooth crash.

1Work partly funded by Fonds National Suisse Recherche Scientifique.

Stefano Coda
CRPP

Date submitted: 20 Jul 2011

Electronic form version 1.4