
https://doi.org/10.6100/IR732944
https://doi.org/10.6100/IR732944
https://research.tue.nl/en/publications/afb7fb9b-208c-4277-b22f-66b3aabcdfec


Visualization of Uncertainty in Fiber Tracking
Based on Di�usion Tensor Imaging



Colophon

This thesis was typeset by the author using LATEX2".

About the cover

The front and back covers are designed by Kim Rauwerdink.

The left image on the front cover shows white matter �bers color-coded by frac-
tional anisotropy threshold. The middle image shows how a �xed safety margin
surrounding a single �ber does not adequately cover the potential �bers created
after repeated measurements. The right image shows a tumor color-coded with
distances to the white matter �bers (indicated in blue).

A catalogue record is available from the Eindhoven University of Technology
Library
ISBN: 978-90-386-3159-2

Printed by O�page, The Netherlands

c
 2012 R. Brecheisen, Maastricht, The Netherlands, unless stated otherwise on
chapter front pages. All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means, electronic or mechani-
cal, including photocopying, recording, or any information storage and retrieval
system, without permission in writing from the copyright owner.



Visualization of Uncertainty in Fiber Tracking
Based on Diffusion Tensor Imaging

Proefschrift

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magni�cus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op woensdag 13 juni 2012 om 16.00 uur

door

Ralph Brecheisen

geboren te Eersel



Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. B.M. ter Haar Romeny

Copromotoren:
dr.ir. A. Vilanova
en
dr.ir. B. Platel



Contents

Colophon ii

Contents v

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem background . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Medical background 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Brain anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Gray matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 White matter . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Applications for �ber tracking . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Brain connectivity research . . . . . . . . . . . . . . . . . . . 11
2.3.2 Neurosurgical planning . . . . . . . . . . . . . . . . . . . . . 12

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Technical background 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Characteristics of di�usion . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Di�usion tensor MRI . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Mathematical description of di�usion . . . . . . . . . . . . . . 18
3.3.2 Fitting the di�usion tensor . . . . . . . . . . . . . . . . . . . 18
3.3.3 Tensor eigenanalysis . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Tensor shape and anisotropy measures . . . . . . . . . . . . . 20

3.4 Fiber tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Resolving multiple �ber orientations . . . . . . . . . . . . . . 22

3.5 Visualization strategies . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 Tensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.2 Tensor eigenvectors . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 Tensor-based scalar measures . . . . . . . . . . . . . . . . . . 24
3.5.4 Deterministic �ber pathways . . . . . . . . . . . . . . . . . . 25
3.5.5 HARDI visualization . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



vi Contents

4 Uncertainty analysis in DTI and �ber tracking 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 De�nition of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 The DTI uncertainty pipeline . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Di�usion modeling . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.3 Fiber tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Probabilistic �ber tracking . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Tensor-derived uncertainty . . . . . . . . . . . . . . . . . . . 36
4.4.2 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.3 Bayesian modeling . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.4 Hybrid methods - ConTrack . . . . . . . . . . . . . . . . . . . 40

4.5 Visualization strategies . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Uncertainty visualization 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Value uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.4 Multivariate data . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Location uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Parameter uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Parameter sensitivity 55
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Processing pipeline overview . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Pre-computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Zero-threshold �ber tracking . . . . . . . . . . . . . . . . . . 57
6.3.2 Calculation of quantitative tract features . . . . . . . . . . . . 59
6.3.3 Cumulative Histograms . . . . . . . . . . . . . . . . . . . . . 60

6.4 Exploration of thresholds and tract features . . . . . . . . . . . . . . 61
6.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5.1 Brain development in premature neonates . . . . . . . . . . . 66
6.5.2 Muscle tissue . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5.3 Brain connectivity . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents vii

7 Illustrative con�dence intervals 71
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Computing �ber con�dence . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 Computing �ber distances . . . . . . . . . . . . . . . . . . . . 74
7.3 Visualization of �ber con�dence . . . . . . . . . . . . . . . . . . . . 76

7.3.1 Generating silhouettes and outlines . . . . . . . . . . . . . . . 77
7.3.2 Rendering con�dence intervals . . . . . . . . . . . . . . . . . 77
7.3.3 Con�dence histogram widget . . . . . . . . . . . . . . . . . . 78
7.3.4 Uncertainty lens . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4.1 Datasets and performance . . . . . . . . . . . . . . . . . . . 80
7.4.2 User evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4.3 General discussion . . . . . . . . . . . . . . . . . . . . . . . . 83

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Distance measurements 87
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3 Clinical questions and requirements . . . . . . . . . . . . . . . . . . . 90
8.4 Pre-processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.5 Real-time feature transforms . . . . . . . . . . . . . . . . . . . . . . 91
8.6 Visualization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.6.1 Minimal distance graph . . . . . . . . . . . . . . . . . . . . . 94
8.6.2 Tumor distance map . . . . . . . . . . . . . . . . . . . . . . 94
8.6.3 Assisted camera positioning . . . . . . . . . . . . . . . . . . . 96
8.6.4 Additional exploration features . . . . . . . . . . . . . . . . . 97

8.7 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Applications in neurosurgical planning 103
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.2 Pre-processing steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.3 Clinical cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10 General discussion 115
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.2 Remaining challenges and future outlook . . . . . . . . . . . . . . . . 117

Bibliography 121

Summary 133

Samenvatting (summary in Dutch) 135



viii Contents

List of publications 137

Acknowledgements 139

Biography 141
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- Dilbert

1Introduction



2 1.1 Introduction

1.1 Introduction

In this thesis we present techniques for the visualization of uncertainty in 3-
dimensional reconstructions of white matter pathways in the human brain. In
this chapter we will start by outlining the main research problems which these
techniques attempt to address.

Recent advances in medical imaging have led to a wealth of new information
about the anatomy and function of the human body. These developments are
especially noticeable in medical imaging of the brain. The brain remains one of
most mysterious organs of the human body and even though signi�cant progress
has been made in revealing and understanding brain function on the basis of med-
ical imaging we are still far removed from a complete understanding. Part of the
research problem lies in identifying and delineating speci�c functional regions in
various locations of the brain. Another part lies in investigating how these func-
tional regions interconnect to form complex brain networks. These are commonly
considered to be the basis of the brain’s phenomenal processing capabilities. A
large part of these networks, especially the long range connections, are formed by
brain white matter which consists of myelinated axons extending from brain cells
or neurons in the brain gray matter. One of the most promising medical imaging
technologies currently available for the analysis of brain white matter connections
is Di�usion Tensor Imaging, commonly abbreviated as DTI. It is an imaging tech-
nique based on magnetic resonance imaging (MRI) which allows quanti�cation of
local �ber orientation in living tissues through measurements of water di�usion.
The orientational information captured by DTI in each point of the tissue can be
used to reconstruct �ber pathways in three dimensions through a procedure com-
monly called �ber tracking. Visualization of these pathways o�ers unique insight
into the 3D layout of white matter �ber bundles and provides great potential for
both neuro-scienti�c research and clinical applications such as neurology, neuro-
radiology and neurosurgery. For example, �ber tracking allows neurosurgeons to
assess the spatial relation between a brain tumor and surrounding critical �ber
bundles. This provides useful information for planning the angle of approach
toward the tumor during resection.

1.2 Problem background

Despite the many advantages of complex imaging technologies such as DTI, there
is also a downside. The amount and complexity of the generated image data
poses considerable challenges for analysis and interpretation. For example, MRI
is one of the most 
exible and versatile imaging technologies available today. As
already explained above, it allows the characterization of tissue structure through
water di�usion but can also measure brain function, cell metabolism, blood 
ow,
blood perfusion and many other properties. However, this wealth of information
is not immediately available to the end user. It needs to be extracted from the
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potentially thousands of raw images through a complex pipeline of mathematical
modeling, analysis and visualization. As a consequence, a direct link between
what is being measured and what is being visualized is no longer present. The
processing pipeline behaves like a black box whose inner workings remain hidden
from the user and which makes reliable interpretation of the output di�cult or
even impossible. To make matters worse, this black box can be a major source of
errors and uncertainties itself.

DTI and �ber tracking are a prime example of this problem. The 3-dimensional
insight they provide has great advantage over 2-dimensional representations such
as provided by conventional MR imaging. However, the DTI imaging and pro-
cessing pipeline, of which �ber tracking is one of the �nal stages, can be subject to
considerable error and uncertainty. This pipeline is necessary in order to extract
useful information from the high-dimensional image data. However, the errors
and uncertainties arising from the di�erent pipeline stages can lead to unpre-
dictable variations in the �nal output. Since the main purpose of �ber tracking
is to increase our knowledge about brain function or to use it as a clinical tool, it
is essential that we try to characterize and quantify the errors and uncertainties
as completely as possible and visually communicate their e�ect to the user.

This is not a trivial matter though. Uncertainty can arise for an almost in�nite
number of reasons. Measuring devices may su�er from noise and bias, have limited
resolution or may be incorrectly con�gured. If the measured data is too complex
to handle, it may have to be simpli�ed using mathematical models. However,
selecting the best model may be di�cult and many models over-simplify the data
thereby ignoring important characteristics or even producing incorrect results.
Further processing may be required to extract additional features of interest from
the data or the model. However, the selected features may give an incomplete or
even incorrect representation of the phenomenon of interest. They may also be
highly sensitive to parameter settings and errors occurring earlier in the pipeline.
In medical applications additional uncertainties arise. For example, tissue pathol-
ogy may disturb the measured signal in unexpected ways. Furthermore, there may
be lack of knowledge about the true relation between tissue properties and the
measured signal. As we will see in Chapter 4, when we discuss errors and un-
certainties in more detail, this lack of knowledge is also present in DTI and �ber
tracking.

Basically, the list of potential sources of uncertainty is endless. The more you
zoom in on details of the pipeline, the more elements you will �nd that can po-
tentially give rise to errors and uncertainties. This observation also illustrates
several limitations and constraints for analysis and visualization. A large part of
the uncertainties arising from the DTI processing pipeline cannot be quanti�ed
or represented in a way that allows their analysis and visualization. For example,
it is very di�cult to determine the exact error introduced by measuring a certain
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property at the millimeter scale while the phenomenon of interest takes place at
the micrometer scale. In DTI there is also no established ground truth against
which to validate measurement and post-processing results. Fiber tracking can
only be validated through indirect methods that have considerable limitations of
their own. For example, one can create phantoms that mimick brain white matter
using arti�cial materials and place these phantoms inside a DTI scanner. How-
ever, such phantoms are always limited in their ability to capture the complex
physiology of real, living brain tissue. Other methods, such as chemical tracers,
can highlight selected �bers very accurately but are invasive, highly toxic and can-
not reveal more than a few, microscopically thin, �bers at a time. Validation can
also be done on the basis of anatomical knowledge, for example, in neurosurgery.
This can be problematic, however, in the presence of tissue pathology, such as
brain tumors, which can distort or otherwise a�ect the anatomy in unexpected
ways.

Without good validation it is di�cult to make de�nitive statements about the
accuracy of �ber tracking. This should be kept clearly in mind in the remainder
of this thesis as well. Accuracy is de�ned as the extent to which a measured value
matches the true value. In the context of DTI, it refers to the correspondence
between the pathways reconstructed with �ber tracking and the underlying white
matter anatomy. As explained above, it is very di�cult to establish accuracy with-
out validation against a gold standard. For this reason, most methods currently
available for the analysis of DTI uncertainty focus on precision or reproducibility.
This refers to the extent in which repeated measurements or calculations produce
similar output results. For example, a wide range of probabilistic �ber tracking
algorithms has been proposed that attempt to describe the reproducibility of �ber
tracking as a�ected by image noise.

Despite the fact that existing methods for uncertainty analysis leave many sources
of uncertainty unexplored, they can still provide very useful information, espe-
cially for users who are less familiar with the underlying technology and its lim-
itations. For example, neurosurgeons primarily consider �ber tracking to be a
visualization tool which can potentially assist clinical decision-making. They can-
not be expected to have detailed knowledge about DTI-speci�c image artifacts,
model di�erences and limitations, tracking errors, parameter settings or render-
ing techniques. Uncertainty visualization can help such users to become aware of
these issues. Unfortunately, most tracking algorithms commonly used in clinical
settings do not calculate nor visualize uncertainty in any way. Fiber pathways
are all visualized as equally reliable, even though some may be false positives that
have no correspondence to the underlying anatomy. Similarly, �ber pathways may
be missing in the visualization while in reality they do exist. Such false negatives
can be caused by imaging or processing errors and pose a considerable problem for
neurosurgical planning because they can be easily mistaken for tissue pathology
e�ects.
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1.3 Challenges

In the previous paragraphs we have described the central problem of uncertainty
in �ber tracking. We have also explained that, if �ber tracking is to be used
for scienti�c research or clinical decision-making, it is important to visually com-
municate the uncertainty to the user. Finally, we pointed out that there are
fundamental limitations to what we can achieve in terms of quantifying and rep-
resenting uncertainty. Since this thesis deals primarily with visualization, we rely
on existing methods for uncertainty analysis. Here, we will describe the main
challenges related to uncertainty visualization and how these apply to DTI and
�ber tracking.

The �rst challenge is related to data complexity. DTI data is high-dimensional,
potentially consisting of dozens of measured values for each voxel. By means of
mathematical modeling data dimensionality can be signi�cantly reduced but the
result is still di�cult to visualize and has kept many researchers busy over the last
few years. Adding uncertainty information, even as a simple scalar value, further
complicates this problem and can easily lead to visual clutter and information
overload. The second challenge of uncertainty visualization is �nding strategies
for evaluating its e�ectiveness. There are di�erent goals involved when consider-
ing this. For example, one could evaluate whether awareness of the presence of
uncertainty is useful to the user. In some cases, users may suspect reliability issues
but under- or overestimate the magnitude of the problem. In other cases, users
may have been completely unaware of the presence of uncertainty. Another goal
would be to show that visualizing uncertainty actually a�ects and even improves
decision-making, that is, leads to better outcomes as compared to decisions made
without taking uncertainty into account. As we will see in later chapters, this is
a very di�cult thing to do, especially since surgical decision-making is a�ected
by many factors. It is far from trivial to prove that showing uncertainty in �ber
tracking is the main factor responsible for a change in decision. In this thesis we
will primarily focus on eliciting an awareness of uncertainty in the user and eval-
uating whether this provides useful information. To accomplish this we develop
several visualization tools for this purpose and discuss the output of these tools
extensively with clinical experts.

1.4 Thesis outline

In this section we provide a short overview of our contributions. We start the main
body of this thesis with two background chapters. Chapter 2 presents a medical
overview of brain anatomy and the main applications for �ber tracking discussed
in this thesis. Chapter 3 focuses on the general principles behind di�usion ten-
sor imaging and �ber tracking which can help readers less familiar with these
topics to follow the remaining chapters. In Chapter 4 we provide an overview
of research performed in uncertainty analysis for DTI and �ber tracking. The
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�rst part focuses on the di�erent sources of uncertainty in the DTI processing
pipeline. The second part discusses probabilistic �ber tracking methods which
serve as a basis for many of the uncertainty visualization techniques presented
in later chapters. In Chapter 5 we present an overview of related work in the
�eld of uncertainty visualization. Our �rst contribution for visualizing parameter
sensitivity in �ber tracking algorithms is presented in Chapter 6. Next, we pro-
ceed with an approach to visualize pathway con�dence intervals on the basis of
probabilistic �ber tracking in Chapter 7. Chapter 8 presents a general framework
for the interactive exploration of distances between objects with uncertain spatial
extent. We apply this framework in the context of neurosurgical planning where
distances are assessed between a brain tumor and surrounding white matter tracts
calculated from probabilistic �ber tracking. In Chapter 9 we present a number
of clinical cases involving brain tumor patients and discuss both the bene�ts and
limitations of uncertainty visualization in neurosurgical settings. We conclude our
thesis with Chapter 10 where we discuss our contributions in a wider context and
present suggestions for future work.



Change is good. You go �rst.

- Dilbert

2Medical background
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2.1 Introduction

Visualization research typically operates on the boundary of multiple application
domains and �elds of expertise. This is primarily what makes visualization inter-
esting, but it can also make it di�cult because we have to know something, at
least at a basic level, about all the application domains involved. In this thesis we
present visualization techniques for �ber tracking based on di�usion tensor imag-
ing and we apply these techniques in the context of brain connectivity research and
neurosurgical planning. The primary interest of both these application domains is
the living human brain. For this reason, we present a comprehensive overview of
brain anatomy in this chapter. We also describe shortly what brain connectivity
research and neurosurgical planning involve and how DTI �ber tracking is used
in these domains.

Figure 2.1: (a) Gray and white matter in cell-stained slice
(http://www.brainmuseum.org). (b) Architecture of a neuron (Quasar Jarosz,
http://en.wikipedia.org).

2.2 Brain anatomy

The brain is the center of the nervous system and the most complex organ in the
human body. It consists of billions of neurons, which are electrically excitable cells
that interconnect in complex networks through electrical and chemical signaling.
A typical neuron possesses a cell body and dendrites (Figure 2.1(b)) which are
thin branches extending from the cell body and connecting to hundreds of other
neurons. The collection of neuron cell bodies and interconnecting dendrites forms
a dense network and is generally called gray matter (Figure 2.1(a)). Besides
dendrites, each neuron also has a single axon which is a special extension of the
cell body transporting electrical signals across large distances to remote parts of
the body. Axons are encapsulated by a myelin sheath whose primary function is
to speed up signal transmission. The collection of myelinated axons is generally
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called white matter and is responsible for the transfer of information between
di�erent gray matter regions (Figure 2.1(a)).

2.2.1 Gray matter

Gray matter is primarily located on the outer surface of the brain, called the
cerebral cortex, where it forms a layer of neuronal tissue. This layer is intricately
folded in order to obtain a maximum surface area inside the con�ned space of
the skull (Figure 2.2(a)). The folds, or valleys, themselves are called sulci (singu-
lar: sulcus) while the smooth areas between folds are called gyri (singular: gyrus).
The pattern of gyri and sulci shows striking similarities between di�erent subjects
which allows them to be classi�ed and named (Figure 2.2(b)). The cerebral cortex
is commonly subdivided into four lobes: frontal, occipital, parietal and tempo-
ral (Figure 2.2(a)). Gray matter is commonly associated with the ’processing’
functions of the brain, such as memory, language, motor and vision.

Figure 2.2: (a) Four major cortical lobes. (b) Major gyri and sulci.

2.2.2 White matter

White matter bundles interconnect di�erent gray matter regions and are also
associated with speci�c brain functions. For the purpose of this thesis we limit
ourselves to a description of only the major white matter bundles. Because these
bundles are also discussed in the following chapters we consider them to be most
relevant. Three di�erent types of white matter bundles can be found in the brain:

� Projection �bers - These mostly run vertically and interconnect functional
regions in the cerebral cortex with the rest of the body (Figurer 2.3(a)).
� Association �bers - These interconnect cortical regions within the same

hemisphere (Figure 2.3(b)).
� Commissural �bers - These interconnect the two brain hemispheres (Fig-

ure 2.3(c)).



10 2.2 Brain anatomy

Figure 2.3: (a) Projection �bers. (b) Association �bers. (c) Commissural �bers. Images
adapted from Williams et al. [167].

The three bundle types can be further subdivided into speci�c bundles that are
anatomically distinguishable in shape. A single, identi�able �ber bundle, however,
can serve multiple brain functions. A clear example is the cortico-spinal tract
(see details below) which transports information from a wide area in the cortex
down the spinal cord to the rest of the body. Only the �bers originating from
the primary motor cortex are involved in speci�c motor functions, e.g. hand
movement. Below, we will describe three major �ber bundles to which we will
refer in the following chapters. These are illustrated and highlighted in blue in
Figure 2.3. Many more exist and for a complete overview we refer the reader to
the white matter atlas published by Oishi et al. [115].

� Corticospinal tract - The cortico-spinal tract (CST) is the collection of
myelinated axons that run between cerebral cortex and the spinal cord.
It consists mostly of axons involved with motor function, but especially
the �bers originating from the primary motor cortex are of neurosurgical
interest. Damage to these �bers can result in permanent functional de�cits
(Figure 2.3(a)). The primary motor cortex is located in the precentral gyrus,
just anterior to the central sulcus in the frontal lobe (Figure 2.2(a)).

� Arcuate fasciculus - The arcuate fasciculus is the �ber bundle connecting
the posterior part of the temporo-parietal lobe with the frontal cortex. Re-
cently, it is considered to be part of the superior longitudinal fasciculus, a
larger complex of �ber bundles involved with a wide range of brain functions
(Figure 2.3(b)). For neurosurgical purposes, however, the arcuate fasciculus
has speci�c interest because of its involvement with language function.

� Corpus callosum - The corpus callosum is the largest white matter struc-
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ture in the brain and belongs to the category of commissural �bers. It
primarily facilitates communication between the two cerebral hemispheres
(Figure 2.3(c)). Its posterior part is called the splenium, its anterior part
the genus.

2.3 Applications for �ber tracking

The ability to visualize the 3D layout of �brous tissues o�ers great potential for
various application domains, especially those involving neuronal tissue such as en-
countered in brain white matter. In this section, we will provide a comprehensive
overview of two such applications: brain connectivity research and neurosurgery.
We will discuss (1) their main goals, (2) how �ber tracking can be used to reach
those goals and (3) how uncertainties in the �ber tracking output a�ect this pro-
cess.

2.3.1 Brain connectivity research

The primary goal of brain connectivity research is to map out structural net-
works of brain connections in as much detail as possible. This is considered to
be essential for understanding brain function. Di�usion tensor imaging and �ber
tracking can play an important role in this research, along with other methods for
studying brain connections such as chemical tract tracing, optical imaging and
basic histology. An example of �ber tracking used for brain connectivity research
is presented by Hagmann et al. [57] who subdivided the white matter/gray mat-
ter interface into 500-4000 equally sized regions of interest (ROI’s). Based on
whole-brain �ber tracking they constructed weighted networks of interconnected
cortical ROI’s (Figure 2.4(b)). Another example is Track Density Imaging, orig-
inally proposed by Calamante et al. [28], a DTI-based imaging technique which
uses the global information obtained from millions of �ber tracts reconstructed
with whole-brain �ber tracking to create images of white matter structures at a
resolution far beyond that of the acquired images (Figure 2.4(a)).

As we will see in Chapter 4 on DTI uncertainty, �ber tracking cannot provide the
same con�dence in the existence of a brain connection as, for example, chemical
tract tracing. However, using probabilistic �ber tracking (Chapter 4) it is possible
to make statements about the reproducibility of the tracking results. Also, unlike
chemical tracing, �ber tracking can be done in-vivo and for large sets of voxels
simultaneously. For this reason, a large part of brain connectivity research consists
in combining di�erent sources of connectivity information and cross-validating the
results of �ber tracking with alternative tract reconstruction methods [12].
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Figure 2.4: (a) Fiber tracts constructed from Track Density Imaging [28]. (b) Construc-
tion of brain network on the basis of whole-brain �ber tracking and a 500-4000 ROI
white-gray matter parcellation [57].

2.3.2 Neurosurgical planning

The ability of DTI and �ber tracking to non-invasively reveal anatomical connec-
tions in brain white matter also o�ers great potential for neurosurgical planning.
By highlighting functionally relevant �ber pathways in 3-dimensions neurosur-
geons are able to improve preoperative patient evaluation, surgical planning, in-
traoperative navigation and patient outcome [6]. Such information cannot be
easily obtained from conventional MR imaging because it represents brain white
matter as a homogeneous mass without details about individual �ber bundles.

Despite these advantages, a reliable interpretation of �ber tracking results in neu-
rosurgical settings can be di�cult. The main reason is the presence of pathological
tissues, such as a brain tumor. These may not only a�ect the behavior of water
di�usion, which is the basic property being measured by DTI, but also a�ect the
underlying �ber structure itself. For example, a brain tumor may exert varying
e�ects on �ber bundles, such as displacement, in�ltration or disruption. Further-
more, certain tumor types are surrounded by a layer of 
uid, called edema, which
can cause �ber tracking algorithms to fail, even though the underlying �ber struc-
ture is intact. In Chapter 4 we will discuss probabilistic �ber tracking algorithms
which attempt to deal with such problems.

Brain tumors

An important part of neurosurgery is dedicated to the resection of brain tumors.
In the following chapters we will regularly refer to the planning of such procedures.
Here, we give a short overview of the di�erent tumor grades as de�ned by the
World Health Organization (WHO). Tumor grades are based on the microscopic
appearance of tumor cells. The less these cells look like normal, di�erentiated
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cells, the more aggressive the tumor is likely to be. The grades are de�ned as
follows:

� Grade I - Well-di�erentiated (low grade)

� Grade II - Moderately di�erentiated (medium grade)

� Grade III - Poorly di�erentiated (high grade)

� Grade IV - Undi�erentiated (high grade)

In Chapter 9 we will describe �ve clinical cases of brain tumor patients. Most of
these have a low-to-medium-grade glioma (WHO-I/II). These are slow-growing
tumors with a relatively good prognosis (10+ years) if the tumor can be resected
as completely as possible. For this, tumor tissue may need to be resected beyond
the boundaries visible on the medical images. The bene�ts of advanced techniques
such as DTI and functional MRI are particularly appreciated here because they
assist the neurosurgeon in �nding the exact boundaries of functionally critical
brain regions and white matter bundles. This is especially important for low-
grade glioma patients because their functional anatomy may be altered. Due
to the slow growth of these tumors, the brain has time to reorganize and move
certain brain functions elsewhere.

Figure 2.5: (a) 3D multimodal visualization using GPU-based volume rendering [19].
(b,c) Two endoscopic visualizations of the nasal cavity as accessed in pituitary tumor
resection [112].

Visualization strategies for neurosurgical planning

Neurosurgical procedures are often complex and associated with considerable
risks. The margin for error is small and obtaining a good view of the target
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lesion and surrounding brain structures is di�cult on the basis of 2D imaging
alone. For this reason, neurosurgical planning has received wide interest in past
visualization research. As the following chapters will show, we apply and evaluate
our visualization techniques also in neurosurgical settings. We will give a short
overview of related work in this area here.

Neurosurgery typically involves multiple imaging modalities such as structural
MRI, CT, functional MRI and DTI. Combining datasets from these modalities in a
single 3D visualization is challenging and several solutions have been proposed for
it, some using CPU-based methods [141] and others GPU-accelerated techniques
[19]. Di�erent systems often focus on di�erent aspects. Some focus on speci�c
neurosurgical procedures such as endoscopic pituitary tumor resections [112] (see
Figure 2.5). Others propose more general visualization systems for neurosurgical
purposes, combining anatomical MRI, functional MRI and DTI in a single view
[19, 21, 51, 86]. Still other systems address the general problem of rendering
multiple volumetric datasets without explicitly focusing on a neurosurgical context
[137, 136, 25]. Most of these neurosurgically-oriented systems rely on deterministic
�ber tracking. An explicit indication of errors and uncertainty in these systems
is not common yet.

2.4 Conclusions

In the previous sections we have provided a short overview of basic medical back-
ground information relevant to the remainder of this thesis. We will now proceed
with a more technical background chapter explaining the basic principles of dif-
fusion tensor imaging and �ber tracking.
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3.1 Introduction

In the previous chapter we introduced the reader to basic medical background
related to brain anatomy and two applications for DTI and �ber tracking that
are of particular interest to this thesis: brain connectivity research and the neu-
rosurgical planning of brain tumor resections. In this chapter we provide more
technical background as we discuss the general principles behind di�usion tensor
imaging, �ber tracking and ’traditional’ visualization strategies that are currently
used in this area. We will limit ourselves primarily to deterministic �ber tracking
algorithms which, given the same input, always produce the same output. In
chapter 4 we discuss another class of tracking algorithms, called probabilistic �ber
tracking, which form the basis of many visualizations presented in this thesis.

3.2 Characteristics of di�usion

Di�usion is an essential transport mechanism in living organisms. For example,
transport of metabolites into cells is mainly facilitated by means of di�usion.
Di�usion is the process of thermally-driven, random movement of molecules over
time, also called Brownian motion. The di�usion process is commonly described
by Fick’s Law of Di�usion:

@
@t
P (r; t) = Dr2P (r; t) (3.1)

In this equation, P (r; t) is a probability density function (PDF) describing the
probability that a molecule is displaced by a vector r in time t. The coe�cient D
is the di�usion coe�cient (m2/s), and depends on molecule type and properties
of the medium. r2 is the Laplacian. If di�usion is unrestricted in 3D space, D is
a scalar constant and Eq. (3.1) is solved by a 3D Gaussian distribution:
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In the next paragraph we will describe how measurements of water di�usion can
be used to extract information about tissue physiology and structure. We will pay
special attention to the possibilities of deriving orientational information in �brous
tissues such as the myelinated axons encountered in the brain white matter.

Unrestricted, apparent and anisotropic di�usion

In free, unrestricted 
uids the di�usion coe�cient D is a scalar constant. In
pure water at body temperature (37 degrees Celcius) the di�usion coe�cient is
3�10�3 mm2s�1 (Figure 3.1(a)). In tissues, however, water di�usion is restricted
by physical barriers such as cell membranes, cytoskeletal structures and macro-
molecules. In this case, the di�usion coe�cient becomes time-dependent and can
be described as D(t). If the observation time t is small, the di�using molecules
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will not have encountered any barriers yet and D(t) = D. If the observation time
is large, molecules will have encountered barriers and their movement is restricted
(Figure 3.1(b)). In this case, D(t) < D. The reduced di�usion coe�cient is com-
monly called the apparent di�usion coe�cient or ADC [90, 144] and can be used
to detect the presence of physical barriers in tissue.

Figure 3.1: (a) Isotropic di�usion without physical barriers. (b) Restricted isotropic dif-
fusion without preferred orientation. (c) Restricted anisotropic di�usion with preferred
orientation.

In �brous tissues, water di�usion shows orientational behavior. For example,
in brain white matter, di�usion of water molecules along the �bers will be less
restricted than perpendicular to the �bers. In the next paragraphs we will ex-
plain how di�usion tensor MRI can make use of this orientational behavior to
reconstruct local �ber orientations in tissues.

3.3 Di�usion tensor MRI

Di�usion tensor MRI, or di�usion tensor imaging (DTI), is an imaging technique
based on magnetic resonance (MR) that allows measurement of di�usion in living
tissues. One of the �rst MR pulse sequences that allowed to do this was proposed
by Stejskal and Tanner [144] in 1965. They proposed the pulse gradient spin
echo sequence that, apart from the standard magnetic gradients used for spatial
encoding of the image, applies additional magnetic gradients to measure di�usion
along multiple gradient directions gi, (i 2 1; :::; N). Stejskal and Tanner derived
the following relation between di�usion and the measured MR signal S(gi), based
on exponential signal decay and a Gaussian di�usion distribution:

S(gi) = S0 exp(�b Di) (3.3)

where S0 is the T2-weighted MR signal without di�usion-weighting, b is an MR
acquisition parameter, called b-value, which depends on gradient strength and
di�usion time t. Di is the apparent di�usion coe�cient (ADC) along gradient
direction gi. It should be noted that this formulation assumes exponential signal
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decay and Gaussian-distributed di�usion. In practice, this requires a b-value
< 2000 s/mm2.

Figure 3.2: Shapes of the 2nd-order tensor: (a) spherical or isotropic, (b) planar and (c)
ellipsoidal or linear.

3.3.1 Mathematical description of di�usion

As explained earlier, apparent di�usion is measured along a given gradient direc-
tion gi. The 3D shape of water di�usion can be probed by measuring di�usion in
many di�erent gradient directions. In this thesis we will commonly refer to the
3D shape of di�usion as the di�usion pro�le.

In DTI, it is assumed that water di�usion in each voxel can be described by a
3D Gaussian distribution. A second-order tensor can be used to model such a
distribution. This model can describe spherical (isotropic), planar and ellipsoid
shaped di�usion pro�les, as illustrated in Figure 3.2. The di�usion tensor D is
a symmetric, positive de�nite (all eigenvalues � 0) tensor represented by a 3� 3
matrix whose scalar elements are denoted by Dij as follows:

D =

0

@
D11 D12 D13
D12 D22 D23
D13 D23 D33

1

A (3.4)

3.3.2 Fitting the di�usion tensor

Based on the tensor representation of di�usion in each voxel, we can now rewrite
Equation (3.3) to incorporate the di�usion tensor as follows:

S(gi) = S0 exp
�
�b gTi D gi

�
(3.5)

where Di = (gTi D gi) is the ADC value in direction gi and D is the di�usion
tensor. Since the di�usion tensor is symmetric we need at least 6 di�usion mea-
surements S(gi) in each voxel to reconstruct it. To estimate the di�usion tensor
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D, we can take N instances of Eq. (3.5), one for each gradient direction gi, and
rewrite them in matrix form as follows:

s = B d (3.6)

where s is a vector containing the signal values for each gradient direction, B
is the B-matrix containing direction-dependent b-value information, and d is a
vector containing the 6 unique values of the di�usion tensor. If N = 6, Equation
(3.6) has the exact solution d = s B�1. To reduce noise e�ects, however, DTI
scans commonly apply gradients in more than 6 directions. In this case, solving
the matrix equation becomes a least-squares problem:

d0 = (BTB)�1BT s (3.7)

3.3.3 Tensor eigenanalysis

As described in earlier sections, measurement of the 3D shape of water di�usion
in living tissues can provide information about the underlying tissue structure.
In pure water, or when tissue structure is randomly oriented in a voxel, the dif-
fusion tensor will have spherical shape, what we call isotropic di�usion. In voxels
where tissue structure has a single preferred orientation, e.g., in muscle tissue or
certain �ber bundles of the brain white matter, the di�usion tensor will have an
elongated, ellipsoid shape. In the living brain, more complex �ber con�gurations
arise as well, such as crossing, kissing, bending and diverging �bers. Unfortu-
nately, the 2nd-order di�usion tensor cannot distinguish between such complex
con�gurations and will tend to a disk-like or planar shape for all such con�gura-
tions. The di�erent shapes are illustrated in Figure 3.2. Another thing to bear in
mind is that the di�usion tensor only speci�es an orientation, not a direction.

From the above, it is clear that tensor shape is a meaningful property. For the
purpose of analysis of di�usion tensor data, several geometric measures exist to
quantify tensor shape [164] and many of them rely on tensor eigenanalysis. This
involves �nding eigenvectors e1; e2; e3 and eigenvalues �1 � �2 � �3 such that the
following equation is satis�ed:

D ei = �i ei ; i 2 f1; 2; 3g and ei 6= 0; �i � 0 (3.8)

where D is the di�usion tensor. Since the null vector is not allowed, Equation
(3.8) can be rewritten as (D � �i I)ei = 0, where I is the identity tensor. This
implies that the matrix D � �i I is singular and its determinant is zero. Each
eigenvalue �i can then be calculated from:

det(D� �i I) = 0 (3.9)

Given the eigenvalues, each eigenvector ei can be calculated by solving:
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(D� �i I )ei = 0 (3.10)

When di�usion anisotropy is linear, we have �1 >> �2 � �3, and the main
di�usion direction is clearly de�ned by the largest eigenvector �1, which is com-
monly called the main eigenvector or MEV. In case of planar anisotropy, we have
�1 � �2 >> �3 and there is no main di�usion direction.

3.3.4 Tensor shape and anisotropy measures

As explained in the previous paragraphs, the 3D tensor shape can provide useful
information about the underlying tissue structure. However, the second-order
tensor is a 6-dimensional object which is di�cult to present in a quantitative
manner to a user. For this reason, several shape metrics have been proposed that
simplify the tensor to a single scalar value. One of the most popular metrics
is fractional anisotropy or FA. This metric describes the normalized variance of
tensor eigenvalues [7] and is de�ned as follows:

FA = 1p
2

p
(�1��2)2+(�2��3)2+(�1��3)2

p
�1+�2+�3

=
p

3p
2
jD� 1

3 tr(D) Ij
jDj

(3.11)

where I is the identity tensor and tr(D) is the tensor trace. An additional advan-
tage of this measure is that it can be calculated using only the tensor trace and
determinant (as indicated in the 2nd equation), without explicitly calculating the
eigenvalues �rst. Westin et al. [164] proposed additional anisotropy measures to
distinguish between linear, planar and spherical di�usion:

CL = �1��2
�1+�2+�3

CP = 2(�2��3)
�1+�2+�3

CS = 3�3
�1+�2+�3

(3.12)

Each of these measures has a range between [0; 1] and CL +CP +CS = 1. Other
measures, such as mean di�usivity (MD = tr(D)=3 = (�1 + �2 + �3)=3) do not
describe the shape of di�usion but only its magnitude. For a more complete
overview of anisotropy measures we refer the reader to Vilanova et al. [156].
It should be noted, that with a planar or disk-like di�usion pro�le, fractional
anisotropy will remain high. This can have unexpected e�ects when performing
deterministic �ber tracking on the basis of FA thresholds, as will be explained in
Section 3.4.

3.4 Fiber tracking

One of the most exciting bene�ts DTI has to o�er for the analysis and under-
standing of brain white matter, is the reconstruction of 3D pathways by means
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Figure 3.3: (a) Conceptual overview of �ber tracking as tracing pathways through a
di�usion tensor �eld. (b) Mathematical representation of �ber tracking where pathway
location is parameterized by a vector r which is a function of length s along the pathway.
The tangent t(s1) represents the local �ber orientation estimated from the local di�usion
tensor.

of �ber tracking. It involves tracing 3D paths through the di�usion tensor �eld.
Fiber tracking algorithms can be subdivided into two general classes: determinis-
tic and probabilistic ones. Deterministic algorithms, given the same input, always
produce the same output. Probabilistic algorithms, on the other hand, introduce
an element of randomness into the tracking process in order to simulate the ef-
fects of data noise on the resulting pathways. Because they play a special role in
this thesis, we defer a discussion of probabilistic algorithms until Chapter 4. In
this section, we focus primarily on streamline tracing, one of the most common
and widely used deterministic tracking algorithms available. Other deterministic
algorithms exist, such as the Tensor De
ection (TEND) algorithm [89, 162], but
a thorough discussion of these is outside the scope of this thesis.

Streamline tracing was originally designed to trace pathways through vector �elds.
In case of 2nd-order di�usion tensor �elds, it is used to trace paths following local
tensor main eigenvectors. Mathematically, a streamline can be represented by a
3D space-curve. The equation describing this curve is based on the fact that the
tangent to the streamline must be parallel with the underlying �ber orientation,
as estimated by the tensor MEV. Location on the streamline r is a function of
the arc length s (the distance along the streamline measured from the starting
point). The evolution of the streamline is described by the following di�erential
equation:
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dr(s)
ds

= e1(r(s)) (3.13)

where e1(r(s)) is the tensor MEV at position r(s) [12]. This equation is solved
by the following integral:

r(s) =
Z s

0
e1(x) dx (3.14)

It should be noted that e1 only speci�es an orientation and not a (signed) di-
rection. Implementation of streamline techniques requires 3 basic elements: (1)
de�nition of seed points, (2) path integration and (3) de�nition of stopping crite-
ria.

1. Seed points - These de�ne the initial conditions for solving the streamline
integration and represent the 3D points where streamline tracing should
start. They are commonly de�ned by the user but they can also be generated
automatically, e.g., by placing a seed point in each non-empty voxel (whole-
brain seeding). User-de�ned seeds are speci�ed by 2D or 3D regions of
interest (ROI) whose interior is sampled to generate a set of seed points.
These can be evenly spaced [155] or randomly positioned.

2. Numerical integration - Several numerical schemes exist to implement
Equation (3.14), using Euler forward, 2nd- or 4th-order Runge-Kutta inter-
polation.

3. Stopping criteria - These prevent the algorithm from tracing into regions
where the vector �eld is not reliably de�ned. In DTI, this can occur in
areas of planar or isotropic di�usion, such as brain gray matter. In this
case, calculations of the main eigenvector e1 are not well-de�ned and depend
largely on noise and round-o� errors. Stopping criteria are usually based on
some anisotropy measure such as FA or CL. In many cases, thresholds on
maximum pathway curvature are also used.

3.4.1 Resolving multiple �ber orientations

In the previous paragraphs we have focused primarily on the di�usion tensor
model. It is the most widely used model in clinical settings. A disadvantage of
this model is its inability to describe voxels with multiple �ber populations (Figure
3.4). To accurately capture the di�usion pro�le arising from such complex �ber
con�gurations, many more gradient directions are required (> 100). Such imaging
techniques are collectively called High Angular Resolution Di�usion Imaging, or
HARDI, and were �rst introduced by Tuch et al. [151].

Whereas DTI reconstructs a Gaussian distribution function for each voxel, HARDI
reconstructs more complex distribution functions, such as illustrated in Figure
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Figure 3.4: Examples of voxels containing complex �ber structures and which are rep-
resented by a planar di�usion tensor (blue circle): (a) kissing, (b) splitting, (c) crossing
and (d) bending.

3.8(a) and (b). The angular portions of these functions are conveniently de-
scribed by spherical harmonics (SH). For this reason, they have been widely used
in the literature to model the apparent di�usion coe�cient [3, 40, 119, 41, 68].
Despite the advantages of HARDI, it requires hundreds of di�usion measurements
per voxel as well as complex post-processing steps. Until now, this makes it less
practical for clinical settings. In this thesis we will primarily focus on DTI.

3.5 Visualization strategies

In the previous sections we have described the basic concepts behind di�usion
tensor analysis and �ber tracking. This discussion is mainly concerned with data,
such as tensors or pathways consisting of connected points. In this section we
present a short overview of techniques for visualizing this data on graphical display
devices. We will start with visualization techniques for tensor data, after which
we proceeed with tensor-derived scalar measures. We conclude the discussion with
strategies for visualizing the �ber pathways generated by �ber tracking.

3.5.1 Tensor data

Second-order di�usion tensors are complex, 6-dimensional objects. One of the
few methods to display them without loss of information, is glyph visualization.
Glyphs are compact graphical objects located at speci�c points in space which
use a combination of color, size, shape and texture to encode properties in the un-
derlying data. Pierpaoli and Basser [125] �rst introduced ellipsoid-shaped glyphs
to visualize 2nd-order tensors obtained from DTI. They used glyph size to encode
mean di�usivity, while the long axis of the ellipsoid corresponds to the direction of
the tensor MEV. Several extensions of this idea have since been proposed [87, 79].
An example are superquadrics which are a family of shapes de�ned by similar
formulas as ellipsoids except for using arbitary powers instead of squares. Box-
shaped glyphs, ellipsoids and superquadrics are illustrated in Figure 3.5.
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Figure 3.5: Examples of tensor glyph shapes: (a) boxes, (b) ellipsoids and (c) su-
perquadrics.

Tensor glyphs have several disadvantages. Usually, a glyph is placed in each
data point. If many data points are shown the density of glyphs will lead to
cluttered visualizations and make it di�cult to distinguish between the di�erent
visual properties of each glyph. Also, glyphs can only represent local information
at discrete data points which makes it di�cult to infer global information from
them.

3.5.2 Tensor eigenvectors

As explained earlier, the tensor MEV is an estimate of the main di�usion direc-
tion and the underlying �ber orientation. A popular approach to visualize �ber
orientation in 2D maps is to convert the tensor MEV e1 to an RGB color. This
can be done as follows:

R = je1 � xj
G = je1 � yj
B = je1 � zj

(3.15)

where (x;y; z) de�nes the coordinate frame of the acquired dataset. To reduce
the visual prominence of isotropic regions, color saturation or opacity can be
modulated on the basis of a tensor scalar measure, such as FA. It should be
noted that manipulation of color saturation is best performed in HSV space (hue,
saturation, value) instead of RGB space.

3.5.3 Tensor-based scalar measures

As explained earlier, tensor-derived scalar measures often allow for easier inter-
pretation of the data. Since these measures are scalar-valued, standard techniques
for 2D and 3D scalar �eld visualization can be used. Figure 3.6(a) and (b) show
examples of such scalar maps for mean di�usivity (MD) and fractional anisotropy
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(FA). Figure 3.6(c) illustrates how multiple scalar measures can be incorporated
into a single 2D image by assigning di�erent colors to di�erent measures.

Figure 3.6: Scalar maps of (a) mean di�usivity, (b) fractional anisotropy and (c) com-
bination of CL (green) and CP (magenta) (see also Equation (3.12).

Scalar �elds can also be visualized in 3D using standard volume rendering tech-
niques. Using iso-surface raycasting it is possible to visualize 3D surfaces of equal
anisotropy, possibly color-coded on the basis of the underlying main eigenvector
orientation [80]. Another approach was suggested by Wenger et al. [163] who use
volumetric line integral convolution (LIC) to create a 3D texture of thread-like
structures on the basis of tensor MEV’s. This 3D texture is then visualized using
direct volume rendering. An additional 3D texture with the same, but thicker,
thread structures is used to create halos around the threads in the �rst volume.
This provides an impression of shadowing and allows the threads to be better
distinguishable.

3.5.4 Deterministic �ber pathways

The output of �ber tracking is generally represented as 3D pathways consisting
of connected points. Many di�erent visualization strategies exist for such data.
First, we can distinguish between di�erent shapes used to represent each path,
such as streamlines or streamtubes. Streamlines are the simplest approach but,
since they have unde�ned surface normals, it is not possible to perform standard
illumination calculations on them. As a result their 3D shape and orientation
can be di�cult to perceive. Streamtubes do allow straightforward illumination
techniques because they have well-de�ned surface normals. An example of a
streamtube visualization for standard �ber tracking is given in Figure 3.7(a).
Figure 3.7(b) shows streamtubes where the radius depends on some underlying
data property, such as fractional anisotropy. Hyperstreamlines are an extension
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of streamtubes which are speci�cally tailored for 2nd-order tensor �elds [39, 172].
Hyperstreamlines have varying cross-sections depending on the local tensor eigen-
vectors and -values.

Figure 3.7: (a) Corpus callosum represented by streamtubes color-coded with main eigen-
vector orientation. (b) Streamtubes with fractional anisotropy encoded in streamtube
radius.

Apart from a distinction between di�erent shapes used to represent �ber path-
ways, there also exist di�erent approaches for rendering these shapes. A common
technique used to improve the orientational nature of pathways is to encode lo-
cal (x; y; z) orientation with RGB colors. Figure 3.7(a) provides an example of
this. Such RGB coloring can be applied to streamlines, streamtubes and hyper-
streamlines. Because of unde�ned surface normals, streamlines cannot be easily
illuminated to improve their depth perception. Even so, they are light-weight
graphics primitives which can be rendered in great numbers without serious per-
formance issues. This is more problematic with streamtubes or hyperstreamlines
whose geometry is much more complex. To overcome the illumination problems
of streamlines, Peeters et al. [124] propose an alternative method to calculate
normals perpendicular to the local streamline direction. Using GPU-acceleration
techniques this allows them to interactively apply hair-like rendering e�ects which
signi�cantly improve spatial depth perception.

3.5.5 HARDI visualization

HARDI data can be visualized using glyphs. However, the complex shape of the
corresponding di�usion pro�le makes standard geometry-driven rendering unsuit-
able in terms of performance. Peeters et al. [123] proposed a GPU-accelerated
ray casting method which allows rendering of glyphs de�ned by spherical har-
monics at interactive framerates. Figure 3.8(a) and (b) illustate examples of this
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approach. This method can also be used to render DTI tensor glyphs such as
described in Section 3.5.1.

3.6 Conclusions

In the previous sections we have discussed the basic principles of di�usion tensor
imaging and �ber tracking. We also gave an overview of the ’traditional’ meth-
ods of visualizing DTI data and �ber tracking results. These techniques do not
take errors and uncertainty into account however. In the next chapter we will
address these issues in more detail and discuss existing methods for the analysis
of uncertainty in DTI and �ber tracking.
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Figure 3.8: (a) Fused visualization of streamlines and glyphs where 2nd-order tensor
glyphs are rendered in regions of linear anisotropy and HARDI glyphs are rendered in
regions of complex �ber architecture. (b) Another example of combining streamlines
with HARDI glyphs [129].



The creator of the universe works in mysterious ways. But he uses a base ten counting system
and likes round numbers.

- Dilbert

4Uncertainty analysis in DTI and �ber tracking
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4.1 Introduction

In this thesis we deal primarily with the visualization of uncertainty. This means
that we have to rely on existing methods for the analysis of uncertainty in DTI and
�ber tracking. This has been an active area of research ever since DTI and �ber
tracking became popular. The purpose of this chapter is to provide an overview
of such analysis methods. The �rst part of this chapter describes the di�erent
sources of uncertainty present in the DTI imaging and processing pipeline. This
overview will serve as a basis for further discussion of uncertainty in this thesis.
In the second part of this chapter we discuss probabilistic �ber tracking methods.
These methods attempt to simulate the e�ects of image noise on the tracking
output by incorporating an element of randomness in the tracking process. Many
such algorithms have been proposed and we will provide an overview of the main
types. As will become clear from this chapter, not all sources of uncertainty can
be quanti�ed in a manner that allows their analysis and visualization. As a result,
many sources of error and uncertainty remain unexplored.

4.2 De�nition of uncertainty

Before we continue, we should more precisely explain what we mean with ’un-
certainty’. The term is rather vague and has di�erent meanings in di�erent
application domains. It can apply to predictions of future events, to physical
measurements already made or simply to the unknown. In this thesis we do not
wish to add to the confusion and introduce completely new de�nitions. We simply
consider uncertainty as a state of ignorance about the true outcome of a measure-
ment or computational process. For example, DTI and �ber tracking are used
to make inferences about white matter pathways on the basis of physical mea-
surements of water di�usion. Uncertainty arises from our ignorance about the
true outcome of �ber tracking, that is, the di�erence between the reconstructed
�ber pathways and the underlying white matter anatomy. In this de�nition, un-
certainty arises as a consequence or result of something else, which we will call
sources of uncertainty. Examples of sources of uncertainty are image noise, mag-
netic distortions, partial volume e�ect and model errors. These and more will be
discussed in detail in the next sections.

4.3 The DTI uncertainty pipeline

In order to discuss the di�erent sources of uncertainty a�ecting the output of
�ber tracking we propose a 4-stage pipeline, which we call the DTI uncertainty
pipeline. This pipeline consists of 4 stages, each responsible for a speci�c function.
The four stages are (1) image acquisition, (2) di�usion modeling, (3) �ber track-
ing and (4) visualization. A diagram of the uncertainty pipeline is illustrated in
Figure 4.1. Besides performing its intended function, each stage is also a source
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of potential errors and uncertainties.

Figure 4.1: The DTI uncertainty pipeline consisting of four stages: (1) image acquisition,
(2) di�usion modeling, (3) �ber tracking and (4) visualization.

Before we discuss the individual stages and the associated uncertainties, we need
to say something about the input of the DTI uncertainty pipeline: the di�usion
signal. Even though this does not constitute a ’processing’ stage in any sense,
there is a fundamental type of uncertainty associated with the interpretation of
this signal. As explained earlier, the primary goal of �ber tracking is to gain
insight into the 3D layout of brain white matter. What is being measured with
DTI, however, is di�usion of water. The presence and orientation of white matter
�bers is merely inferred on the basis of anisotropic di�usion of water molecules.
Even though the correspondence between di�usion and �ber orientation has been
validated to a certain extent in muscle tissue [154, 153], spinal cord tissue [29, 103]
and phantom studies [98, 150], the exact physiological basis of di�usion anisotropy
and its relation to �ber orientation remains a topic of debate. Di�erent compo-
nents of the white matter axons contribute to di�usion anisotropy, such as the
cytoskeletal lattice of neuro�laments and microtubules, axonal membranes and
myelin. However, there is still much debate about the individual contributions of
these components to the overall di�usion signal measured in each voxel [9].

We will now proceed with a discussion of the di�erent pipeline stages and the
uncertainties a�ecting their outputs.

4.3.1 Image acquisition

DTI is based on magnetic resonance and, for this reason, su�ers from many of the
same image artifacts. However, typical DTI pulse sequences take more time, are
much more complex and involve strong magnetic gradients that are constantly
being switched on and o�. This enhances typical MRI artifacts and gives rise to
additional, DTI-speci�c artifacts. We will not provide an exhaustive list of these
artifacts but instead focus on those that have been investigated in the context of
�ber tracking and visualization of its output.

Noise - The relatively long duration of DTI pulse sequences results in increased
signal loss and decreased signal-to-noise ratio (SNR). The e�ect of noise on �ber
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tracking output has been widely investigated in the neuro-imaging literature
[88, 4, 65, 150] and has given rise to a wide range of probabilistic tracking al-
gorithms that attempt to take image noise into account [11, 50, 122]. We will
defer an extensive discussion of probabilistic tracking methods to Section 4.4.

Partial volume e�ect - Partial volume e�ect, or PVE, results in loss of informa-
tion and detail due to averaging of tissue properties inside a single image voxel. It
leads to contamination of the di�usion measurement, especially in voxels located
at the boundary of two or more tissue types, e.g., white matter and cerebral spinal

uid. Due to the low image resolution of DTI, PVE is generally more pronounced
than in conventional MRI. The e�ect of PVE on deterministic �ber tracking has
been investigated by a number of authors [59, 72, 158].

Motion artifacts - With the growing trend to increase the number of gradient
directions in DTI, acquisition time increases as well. This makes it more likely
that subjects move during the scan which results in mis-alignment of the images.
Fortunately, mis-alignments involve only rigid-body transformations and can be
corrected easily using image registration. However, care should be taken to also
re-align the gradient encoding vectors (stored in the B-matrix) before calculating
the tensor and performing �ber tracking [92].

Magnetic distortions - The quality of spatial encoding of MR images relies on
the homogeneity of the static magnetic �eld. However, di�erences in magnetic
susceptibility between adjacent tissues types can cause disturbances in the mag-
netic �eld and thereby result in image distortions. These can be quite severe, for
example wherever brain tissue is close to air-�lled cavities in the head. Suscepti-
bility artifacts can be corrected to some extent but this is not common practice
and the correction algorithms can introduce biases of their own [72]. The e�ect
of susceptibility distortion on �ber tracking, in some cases, may result in �bers
ending up in the wrong sulci [5, 91]. Eddy currents are another source of image
distortion but these can be easily corrected on a slice-by-slice basis.

Scanner settings - DTI pulse sequences are con�gured on the basis of many pa-
rameters, such as number of gradient directions, b-value, number of non-di�usion-
weighted images, etcetera. In principle, these settings are �xed between di�erent
scan sessions. However, the e�ect of changes in these parameters (e.g., when
comparing data between di�erent institutions) can be di�cult to predict. Also,
some drift in these parameters can be expected due to warming up of the scanner.
Especially the choice of the b-value can have a large impact on the resulting data.
It is de�ned as follows:

b = 
2 G2 �2
�

��
�
3

�
(4.1)

where 
 is the gyro-magnetic ratio of water, G is the gradient amplitude, � is the
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gradient pulse duration and � is the time between consecutive gradient pulses.
Pulse duration also determines the di�usion time. For short durations, molecules
will not have had time to run into physical barriers. The measured di�usion
pro�le will therefore be isotropic. Conversely, long durations lead to increasing
numbers of molecules hitting physical barriers. This results in more pronounced
di�usion anisotropy in �brous tissues.

Figure 4.2: Di�usion pro�les for single-orientation �bers (top row) and crossing �bers
(bottom row). Crossing �ber populations are incorrectly described by the 2nd-order
tensor model. As a result, the direction of main di�usion as predicted by this model
does not correspond with either �ber population.

4.3.2 Di�usion modeling

DTI can only measure di�usion in a single direction at a time. To determine the
direction of greatest di�usion, many measurements have to be performed for each
voxel along many di�erent gradient directions. To deal with such high-dimensional
data mathematical models are �tted to the data in each voxel. This reduces the
set of data values to its essential characteristics. In DTI a 2nd-order tensor model
is used for this purpose. However, this model can describe only a single average
�ber orientation per voxel. If �bers are crossing or diverging inside a given voxel,
the 2nd-order tensor model will be incorrect and result in unreliable results. This
is illustrated in Figure 4.2. Even if the tensor model is correct, variations can
arise from the �tting procedure. Ordinary least squares �tting is most commonly
applied but other regression procedures exist that give slightly di�erent results
[83, 84].
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4.3.3 Fiber tracking

As explained in Chapter 3, �ber tracking involves the integration of voxel-wise
�ber orientations into a pathway that connects di�erent brain regions [12]. Several
methods to implement this exist but the most popular and widely used method
remains streamline tracing. Each streamline is described by a di�erential equation
that allows calculation of a position on the streamline by integrating all previous
position changes. However, the iterative nature of the numerical solvers, makes
streamline tracing highly sensitive to local errors in the underlying vector �eld,
which in case of DTI is the tensor MEV. As tracking proceeds away from the
starting point, directional errors accumulate. As explained in Chapter 3, each
�ber tracking algorithm consists of 4 basic elements: (1) numerical integration,
(2) interpolation, (3) stopping criteria and (4) seeding and �ltering. The purpose
of these elements have already been described earlier. Here, we will focus on the
uncertainties arising from them.

Numerical integration - Numerical integration in �ber tracking can be imple-
mented in di�erent ways, such as Euler forward integration [110] and 2nd- or
4th-order Runge-Kutta integration [8]. The quality and smoothness of pathways
also depends on the integration step size [150]. TEND, or tensor de
ection, uses
the full di�usion tensor to guide the direction of step vectors. If the tensor is
planar or isotropic, tracking proceeds in a straight line [89]. This method may be
less sensitive to noise and will therefore result in slightly di�erent pathways.

Interpolation - Also, when calculating the next integration step vector, some
form of interpolation is needed when the current position lies in between data
points. Di�erent options will lead to di�erent results, e.g., nearest-neighbor, lin-
ear [110] or higher-order interpolation [8, 2] of (1) the main eigenvector [110] or
(2) the tensor itself [8, 2]. The di�erent choices that can be made for any given
implementation of �ber tracking can result in considerable overall di�erences be-
tween the output of di�erent algorithms, even if the starting conditions (data,
thresholds, seed points) are kept constant. The variability may have a negative
e�ect on the con�dence users have in the reliability of �ber tracking, especially in
risk-related situations such as neurosurgery [27]

Stopping criteria - Another major source of variation, between di�erent users
or di�erent sessions, are parameter settings such as stopping criteria. Many �ber
tracking algorithms are highly sensitive to small changes in the associated thresh-
olds, meaning that a small change in threshold value can lead to a large change
in pathway length [150]. We discuss this issue in more detail in Chapter 6 where
we present techniques for visualizing the e�ect of parameter changes on the �ber
tracking result.

Seeding and �ltering - Seed points de�ne the initial conditions for numeri-
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cal integration. In most cases, seeding has to be done manually by the user,
thereby introducing user bias. Bias can be reduced by detailed written instruc-
tions [33, 159] or combining seed regions with �lter regions in di�erent Boolean
combinations (AND, OR, NOT) [65, 60]. The purpose of seeding and �ltering is to
extract speci�c �ber bundles, e.g., the motor part of the corticospinal tract (CST)
or the optic radiation. An alternative approach could be to generate pathways
on the basis of whole-brain seeding and apply a pathway clustering algorithm to
selectively subdivide the total set of pathways into subsets that, hopefully, rep-
resent anatomically recognizable �ber bundles [157, 26]. A similar result might
be achieved by using a pre-classi�ed white matter atlas and warping the current
dataset to it in order to �nd out which pathways belong to which bundle [114].

Figure 4.3: GPU-based streamline illumination and shadowing [123]. (a) Hair-like il-
lumination of muscle �bers in an ex-vivo heart. (b) Similar illumination, now with
shadowing applied to improve depth perception of individual �bers.

4.3.4 Visualization

Even though we use visualization techniques to show uncertainty, it can be a
source of errors and uncertainty itself. For example, the pathways calculated
from �ber tracking may be simpli�ed (by removing vertices) for the purpose of
rendering performance. Also, di�erent lighting models can be chosen to render
�ber pathways. Lighting (and shadowing) plays an important role in depth per-
ception. Many existing �ber tracking tools do not apply lighting to the �ber
pathways or rely on very simple lighting models. Photo-realistic rendering at-
tempts to simulate real-world lighting as closely as possible but the algorithms
involved are computationally expensive and often not suitable for rendering at
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interactive framerates. One counter-example is the work proposed by Peeters et
al. [123] who present a GPU-based rendering algorithm for applying lighting and
shadowing to streamlines. An example rendering is illustrated in Figure 4.3.

4.4 Probabilistic �ber tracking

As explained in the beginning of this chapter, we rely on existing methods for the
quanti�cation and characterization of selected sources of uncertainty. Probabilis-
tic �ber tracking algorithms address a widely investigated source of uncertainty,
namely image noise. In this section we give a brief overview of such algorithms.
Whereas deterministic algorithms typically produce a single estimate of orienta-
tion for each �ber population in a voxel, probabilistic algorithms derive a distri-
bution of �ber orientations in each voxel based on an estimation of noise. For
multiple �ber populations, each with a di�erent average orientation, such a dis-
tribution can be multimodal. Probabilistic tracking algorithms can roughly be
subdivided into the following categories:

� Tensor-derived uncertainty
� Bootstrapping
� Bayesian modeling

4.4.1 Tensor-derived uncertainty

Tensor-based approaches rely on a single DTI scan and calculate a 2nd-order dif-
fusion tensor for each voxel. Anisotropy and tensor shape properties are then used
to derive probability distribution functions (PDF’s). One of the earlier methods
was proposed by Koch et al. [85] and relied on Monte Carlo random walks, where
�ber tracking proceeds from voxel to (neighboring) voxel without interpolation.
The probability of choosing a particular neighboring voxel depends on the angle
between the tensor main eigenvector in the initial voxel and the vector connecting
the initial voxel with the neighboring voxel. Another approach for determining
step vectors along a �ber pathway is to assume the main eigenvector in each voxel
to be a correct average but perturb its direction based on the linear anisotropy
of the underlying tensor [20, 122]. Monte Carlo random walks have also been
used to simulate random particle movement [58]. To determine each step along
the particle’s path, a random unit vector is selected from a uniformly distributed
orientation distribution function (ODF) and multiplied by the underlying di�u-
sion tensor. This approach is similar to the tensor de
ection method proposed by
Lazar et al. [89].

4.4.2 Bootstrapping

A disadvantage of the tensor-shaped methods is that they are biased toward the
tensor originally �tted to the data. The tensor MEV is taken to be a correct aver-
age and uncertainty arises only from variations in orientation about the MEV. A
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Figure 4.4: Example of bootstrap method: three datasets are acquired and used to
generate a large number of bootstrap datasets which consist of random slice selections
with replacement from the original datasets. For each bootstrap dataset a tensor dataset
is created. In each voxel a cone of uncertainty can be derived on the basis of main
eigenvector variations across all bootstrap tensors for that voxel [12].

better, and less biased, approach to characterize uncertainty due to noise would
be to repeat the measurement many times. However, due to time constraints,
di�usion MRI does not allow acquisition of the hundreds of datasets that would
be required for a robust estimation of uncertainty. Bootstrapping is a well-known
technique in statistics to estimate the distribution of a given statistic on the basis
of only a small set of samples. In DTI, bootstrapping has been used to characterize
uncertainty in various tensor scalar measures [120] as well as �ber orientation [70].

Regular bootstrap - The general principle of DTI bootstrapping is illustrated
in Figure 4.4. Based on a small set of image acquisitions, a large set of bootstrap
data sets is created by randomly selecting slices, with replacement, from the orig-
inal datasets. For this, consider a single DTI dataset consisting of N di�usion
measurements per voxel V , one measurement per gradient direction. Bootstrap-
ping involves repeating the di�usion-weighted image (DWI) scan M times thereby
resulting in M realizations V �i (0 < i �M) for each original voxel V . We can now
construct a new voxel W by, for each gradient direction gj (1 < j � N), randomly
selecting a voxel V �i , with replacement, and taking the value corresponding to gj .
The new voxel can be used to re-�t the di�usion model (whether 2nd-order tensor
or high-order, multi-�ber models). Assuming a 2nd-order tensor model, repeating
this procedure many times allows us to approximate the distribution of tensors
at each voxel position.

Wild bootstrap - Regular bootstrapping provides an intuitive way to estimate
uncertainty in di�usion tensors. However, it requires at least 4 to 5 repeats of
the DWI scan. In clinical settings, this can take too much time, especially with
current trends for using medium to high angular resolution imaging (e.g. > 32
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Figure 4.5: Wild Bootstrap: In the ideal case we have a perfect model �t. In practice,
the �t is imperfect leading to model residuals (di�erences between measured and model-
predicted signals). Residuals are randomly 
ipped, after which the tensor model is �tted
again. This process is repeated many times to obtain a large collection of tensor datasets
[71].

directions). Wild bootstrapping requires only a single DTI scan at the expense
of certain simplifying assumptions [71, 165]. The general principle behind Wild
Bootstrapping is illustrated in Figure 4.5. It works as follows: a given voxel V
consists of N di�usion measurements. As explained in Chapter 3, the vector d0
containing the 6 unique elements of the di�usion tensor D can be estimated (using
ordinary least squares optimization) as follows:

d0 = (BTB)�1BT s (4.2)

where B is the B-matrix. Once we have d0 we can compute the model-predicted
signal values s0 = B d0 and subtract these from the original signal values s to
obtain a vector r = (s0 � s) of residuals. The Wild bootstrap procedure involves
repeating the estimation of d0 in each voxel multiple times as follows:

d0 = (BTB)�1BT (s + q(r)) (4.3)

where the function q randomly multiplies each separate residual of r by 1 or -1.
By perturbing residuals randomly each tensor �t will be slightly di�erent from the
previous one. The end result of applying the Wild Bootstrap procedure K times
for all voxels in the original dataset, is a set of K tensor volumes. Conceptually,
this amounts to having a dataset where each voxel contains a distribution of
tensors. The uncertainty in anisotropy and main eigenvector direction predicted
by Wild bootstrap data has been found to be very similar to the original, regular
bootstrap method [71]. It should be noted that residuals are 
ipped for each
gradient direction independently. They are not exchanged between directions
because tensor �tting is done, not directly on the di�usion signal, but on the
log-transformed di�usion signal. This causes variations in the di�usion signal due
to noise to become dependent on direction.
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4.4.3 Bayesian modeling

Bootstrapping methods do not require an explicit mathematical formulation of
uncertainty. They also require minimal assumptions regarding the estimation of
uncertainty. Bayesian methods, on the other hand, provide a formal framework
for modeling uncertainty, de�ning prior assumptions and predicting error propa-
gation. Bayes’s Theorem states that the posterior probability distribution of the
model parameters �, given the data D and the model M , is de�ned as follows:

P (�jD;M) =
P (Dj�;M) P (�jM)

P (DjM)
(4.4)

A possible disadvantage of Bayesian methods is that they rely on assumptions
about the prior and likelihood distributions of model parameters and noise in the
data. Bootstrapping methods are less dependent on such assumptions. Even so,
the explicit mathematical formulation of assumptions as separate PDF’s allows
them to be changed and updated as knowledge about the underlying processes in-
creases. Together with the wide range of techniques for solving Bayesian problems,
this has made Bayesian inference a popular approach for developing probabilistic
�ber tracking algorithms. Di�erent di�usion models have been proposed in this
context such as the ’ball-and-stick’ model [11], tensor [11, 50, 74], and models
supporting multiple �ber orientations per voxel [13, 66, 64].

Figure 4.6: Optic radiation: (a) Cranial-to-caudal view indicating Meyer’s Loop and
visual cortex. (b) Side view of optic radiation.
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4.4.4 Hybrid methods - ConTrack

Not all probabilistic �ber tracking methods can be easily classi�ed according to
the categorization used in the previous examples. Some algorithms combine ele-
ments of Bayesian inference and bootstrapping, such as the ConTrack algorithm
proposed by Sherbondy et al. [142]. This algorithm is speci�cally designed to
reconstruct pathways that are known to exist and therefore relies on at least two
regions of interest. The main di�erence between ConTrack and other probabilistic
�ber tracking methods is its separation of (1) pathway sampling and (2) pathway
scoring. Most algorithms combine these two steps. They tend to ignore pathways
evolving in unlikely directions, even though such pathways may be perfectly valid
anatomically. This can occur, for example, in the optic radiation. This bundle
runs between the geniculate nucleus in the mid-brain towards the visual cortex
at the back of the head. However, it does this by �rst running in lateral-anterior
direction and then sharply bending back to continue its path posteriorly. The
sharply bending part of the optic radiation is commonly called Meyer’s Loop.
Many tracking algorithms, even probabilistic ones, have problems reconstructing
Meyer’s Loop [13, 64, 66]. The optic radiation, including Meyer’s Loop, is illus-
trated in Figure 4.6. The main problem ConTrack tries to address is the failure
of many probabilistic algorithms to reconstruct certain �ber pathways that are
known to exist.

Pathway sampling - ConTrack performs pathway sampling by generating a
large set of potential pathways that have end-points in two ROIs. The directions
in which these pathways are allowed to evolve is only loosely constrained. This
allows pathways to be sampled which would otherwise have been ignored.

Pathway scoring - Pathway scoring involves computing a con�dence value for
each pathway sample based on its anatomical validity. A pathway score Q(s) is
de�ned as:

Q(s) = q(Djs) q(s) (4.5)

where s is the pathway and D the data values encountered along the pathway. The
data-dependent part of the score determines how well the pathway is supported
by the di�usion tensors encountered along its length. For a pathway consisting of
N nodes, it can be computed as follows:

q(Djs) =
NY

i=1

q(Dijti) (4.6)

where Di and ti are the di�usion tensor and tangent vector at node i. The
term q(Dijti) is computed using a Bingham distribution [35]. For details we
refer the reader to Sherbondy et al. [142]. The data-independent part of the
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score represents prior knowledge about the shape of neuronal connections and is
de�ned as follows:"

q(s) = qend(s1) qend(sN )
N�1Y

i=2

qcurve(�i) qlength(si) (4.7)

where qend(si) returns 1 if si is inside a ROI, and zero otherwise. The function
qlength(si) returns a non-zero value if si is in white matter, and zero otherwise.
The function qcurve(�i) returns a score depending on the angle of the pathway
as it enters and exits a given node. Again, for details we refer the reader to
Sherbondy et al. [142].

4.5 Visualization strategies

In the previous chapter we presented a number of ’traditional’ approaches for the
visualization of DTI tensor data and deterministic �ber tracking. Visualization
of the output of probabilistic �ber tracking has received less attention. It is also
more di�cult because of the large quantity of �ber pathways potentially gener-
ated by such methods. Direct visualization of these pathways using, for example,
streamlines is mostly ine�ective because of the resulting visual clutter. Currently,
the most popular method to visualize probabilistic tracking results is to create 3D
scalar maps, similar to those described in Section 3.5.3 of the previous chapter.
Each voxel stores a �ber density depending on how many �ber pathways inter-
sect it. This provides an indication of the likelihood or probability of each voxel
being part of the �ber bundle of interest. These 3D probability maps can then be
visualized as 2D color-coded maps or using volume rendering such as illustrated
in Figure 4.7.

Even though 2D and 3D �ber density maps are the most popular way to present
probabilistic tracking results, they do not provide insight into the 3D layout of
�ber pathways and variations in their shape due to uncertainty. The visualization
techniques presented in Chapters 6, 7 and 8 are speci�cally designed to deal with
this issue. However, before we proceed with these chapters, we will �rst present
an overview of existing research in uncertainty visualization in the next chapter.

4.6 Conclusions

In the previous sections we have described the di�erent sources of uncertainty
arising from the DTI acquisition and processing pipeline. We also outlined exist-
ing methods for characterizing uncertainty, especially probabilistic �ber tracking
methods which attempt to describe the e�ects of image noise on the �ber tracking
output. In the next chapter we will focus on visualization of these uncertain-
ties.
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Figure 4.7: Color-coded scalar probability maps based on probabilistic �ber tracking
[105].
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- Dilbert

5Uncertainty visualization
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5.1 Introduction

In the previous chapter we have given an overview of uncertainty analysis in DTI
and �ber tracking. In this chapter we focus on the visualization of uncertainty
and previous work done in this area.

Di�erent ways exist to classify uncertainty visualization techniques. As explained
in Chapter 1, uncertainty can arise from a wide variety of sources, only some of
which can be characterized in a quanti�able manner. Such quanti�able measures
of uncertainty are standard deviations, percentiles, min/max ranges, errors, con�-
dence intervals or complete distributions [121]. Other descriptions of uncertainty
are not easily quanti�ed nor measured such as the quality of the data source, the
degree of subjective in
uence in the data recording process or the logical consis-
tency between relations present in the data [54, 102]. As explained in Chapter 1,
the lack of knowledge about the true relation between the measured signal (water
di�usion) and the physical phenomenon of interest (�ber orientation) is also a
source of uncertainty that is di�cult to characterize.

Data visualization allows us to analyze large quantities of data by presenting in a
way that makes optimal use of the pattern recognition capabilities of the human
visual system. This means the data, or measures of its uncertainty, has to be
recorded or transformed to a format that allows mapping to visual properties, e.g.
color, shape, size or texture. Without such a visual mapping, visualization itself
is not possible. For this reason, in our discussion of related work in uncertainty
visualization we always consider three aspects which each technique needs to take
into account:

� Characterization - Uncertainty has to be described in some way, by mea-
surements or models which re
ect prior knowledge about the phenomenon of
interest. For example, uncertainty about temperature in a speci�c location
could be described by a probability distribution derived from repeated mea-
surements. Or, temperature variations are assumed to follow a Gaussian-
distributed pattern and measurements are performed to estimate its mean
and standard deviation.

� Representation - Once uncertainty has been characterized, we have to
decide which features of this description we wish to visualize. For exam-
ple, given a Gaussian model for temperature variations we may select the
standard deviation as our representation of uncertainty. Or, we determine
a 95% con�dence interval and use it as a quantitative measure.

� Visualization - After choosing how we quantify uncertainty, we can decide
how to visualize it. For example, information about the range of temper-
atures at di�erent locations in a certain land area can be visualized using
color mapping or iso-contours.

In the following sections we will present an overview of uncertainty visualization
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techniques. Choosing a good classi�cation for this is not straightforward because,
as explained earlier, uncertainty arises in many di�erent forms. Several authors
have proposed classi�cation schemes for uncertainty visualization. For example,
Pang et al. [121] classify techniques on the basis of what they change in the
display, such as adding glyphs, adding continuous geometry (lines and surfaces),
modifying geometry, modifying visual attributes, animation and sound. Griethe
and Schumann [54] propose a similar classi�cation but add interactive manipula-
tion (e.g., of parameter settings) as a means of visualizing/exploring uncertainty.
In the following, we propose a classi�cation on the basis of the following categories:

1. Value - This represents uncertainty about measured or calculated data
values. This category can be further subdivided according to data type,
e.g., scalars, vectors, tensors and multivariate data.

2. Location - This represents uncertainty about the location where data values
or objects exist. This can refer to the position of individual objects such
as particles or it can refer to surfaces, such as reconstructed from height
measurements.

3. Parameter - This represents uncertainty about the e�ect of variations in
parameter values of models or computational algorithms.

5.2 Value uncertainty

Value uncertainty has received the most attention in the visualization research
community. In many cases, data values are obtained from physical measurements.
Modern data acquisition techniques allow the collection of enormous quantities
of data and hardware performance often allows many repeated measurements
in order to characterize uncertainty. We can distinguish between di�erent data
types, such as scalars, vectors, tensors and multivariate data. We will shortly
describe di�erent approaches for visualizing uncertainty for these di�erent types.

5.2.1 Scalars

Scalar data is the most common type of data available from physical measure-
ments. For example, Djurcilov et al. [42] use volume rendering to visualize 3D
measurements of water temperature and salinity in ocean data. Uncertainty is
characterized using Monte Carlo simulations based on ocean models and rep-
resented as a scalar-valued variance. Visualization was done using 1D and 2D
transfer functions mapping combinations of data values and uncertainties to color
and opacity. Cedilnik et al. [31] propose a general method for visualizing nor-
malized, scalar representations of uncertainty in 2D scalar maps. To visualize
uncertainty they overlay the 2D map with grid lines and apply varying levels of
distortion to the grid lines based on the uncertainty of the underlying data values
(Figure 5.1(b) and (c)). Uncertainty in scalar data can also be represented more
fully, for example by means of probability density functions (PDFs). Visualization
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Figure 5.1: (a) Scalar uncertainty described by PDF features [77]. (b,c) Scalar-valued
uncertainty used to introduce disturbances in grid lines such as (b) distortion and (c)
noise [31].

of such PDF’s can be accomplished with di�erent types of graphs and plots, such
as encountered in traditional exploratory data analyis [152] or extensions thereof
[128, 16, 47, 166, 62]. A disadvantage of these techniques is the amount of screen
space they require. Unless the data is very sparse, they do not easily translate to
2D or 3D maps without visual clutter and occlusion. A solution to this problem
can be to reduce the PDF to a limited set of features, such as the mean or stan-
dard deviation. Kao et al. [77] take this approach to visualize such PDF features
in 2D geographic maps, such as mean, standard deviation, interquartile distance
and mean-median di�erences (Figure 5.1(a)). In some cases, the distribution of a
scalar value may be unknown but a min/max range may be available. Olston et
al. [116] propose speci�c visualization techniques for such bounded uncertainty.

5.2.2 Vectors

Vector �elds are common in many application domains such as physics, weather
prediction and oceanography. Even though vectors can represent any N -tuple
of data values, they mostly represent directional information. Chapter 3 already
mentioned that vector �elds play an important role in DTI and �ber tracking.
DTI data is initially represented as a 2nd-order tensor �eld but �ber tracking is
mostly performed on the �eld of tensor main eigenvectors. We can distinguish
di�erent graphics primitives used for the visualization of vector �eld uncertainty:
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Figure 5.2: Uncertainty arising from di�erent streamline tracing algorithms. (a) Line
segments. (b) Barbell glyphs [95]. (c) GPU-based texture cross-advection [24].

Streamlines - The shape of the streamlines derived from streamline tracing de-
pends on several factors. In Chapter 4 we already indicated that the numerical
integration scheme and integration step size can be a source of streamline vari-
ation. Lodha et al. [95] investigated precisely this issue and propose various
visualization strategies, such as barbell glyphs, ribbons and animations, to high-
light streamline variations as a result of di�erent tracing algorithms (Figure 5.2(a,
b)). In Chapter 6 we will discuss how user-de�ned parameters can have similar
e�ects. Another approach for streamline-based vector visualization is proposed
by Boller et al. [23] who calculate trajectories of air 
ow by interpolating points
inside so-called hypercubes (3D + time). Uncertainty is represented by the dis-
tance between each trajectory and an estimated worst-case trajectory in each
hypercube. Visualization of uncertainty is done by mapping distance to stream-
line thickness.

Glyphs - Streamlines provide global information about vector �elds at the ex-
pense of computational biases and errors. Alternatively, glyphs represent data
values directly but only locally. This approach was taken by Wittenbrink et al.
[168] who use glyphs to visually encode uncertainty in the direction and magni-
tude of wind velocities captured by repeated radar measurements. Uncertainty
is represented as standard deviations or min/max ranges. The authors propose
various glyph designs encoding di�erent data values and uncertainties (Figure
5.3(a)). Although not explicitly designed for vector �eld uncertainty, Hlawatsch
et al. [63] propose Flow Radar Glyphs that show directional changes in a local
vector value over time (Figure 5.3(b)).

Texture-based approaches - Another common approach to visualize vector
�elds is to use texture advection such as proposed by Botchen et al. [24]. They
investigate particle movement captured by particle image velocimetry. Directional
uncertainty of the particles is captured by multiple measurements and represented
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