Homogenization of heterogeneous polymers towards cosserat media
van der Sluis, O.; Vosbeek, P.H.J.; Schreurs, P.J.G.; Meijer, H.E.H.

Published: 01/01/1996

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 29. Dec. 2018
Homogenization of Heterogeneous Polymers towards Cosserat Media

O. van der Sluis, P.H.J. Vosbeek, P.J.G. Schreurs, H.E.H. Meijer

Eindhoven University of Technology
Faculty of Mechanical Engineering
Section Materials Technology
P.O. Box 513, NL 5600 MB Eindhoven

1 Introduction

Experiments: The microstructure of polymer blends has substantial influence on the macroscopic deformation behaviour.

Objective: Determination of macroscopic constitutive equations from microstructural analysis:

- Macroscopic model
- Homogenization
- Closed form constitutive equation
- Microscopic model

2 Macroscopic Model

Model requirement: Proper description of strain softening behaviour → non-local models necessary.

Choice: Cosserat media:
- **Additional degrees of freedom:** independent rotations.
- **Kinematical quantities:** strain tensor \(\varepsilon_{ij} \) and torsion tensor \(\tilde{k}_{ij} \).
- **Dynamical quantities:** stress tensor \(\sigma_{ij} \) and couple-stress tensor \(\mu_{ij} \).

The constitutive equations are formulated as

\[
\sigma_{ij} = \frac{E}{1 + \nu} \left(\varepsilon_{ij} + \nu \varepsilon_{(ij)} + \frac{\nu}{1-2\nu} \tilde{k}_{kk} \delta_{ij} \right),
\]

\[
\mu_{ij} = \frac{D}{1 + \mu} \left(\tilde{k}_{ij} + \eta \tilde{k}_{(ij)} + \frac{\mu}{1-2\mu} \tilde{k}_{kk} \delta_{ij} \right),
\]

with \(\cdot \) the symmetric, and \(\cdot \) the skew-symmetric part of a tensor.

3 Microscopic Model

Model requirement: Proper description of the deformation behaviour of a Representative Volume Element (RVE).

Choice:
- PolyCarbonate with microscopic holes.
- Compressible Leonov-model.

4 Homogenization Procedure

Requirement Boundary Conditions on RVE: independent variation of macroscopic deformation quantities by using micro-macro definitions → displacement field \(u_i = u_i(\varepsilon_{ij}, \tilde{k}_{ij}) \).

5 Application and Verification

Application for a tensile test on a single-edge notched specimen.

Verification with 'direct' finite element calculations of the heterogeneous material.

<table>
<thead>
<tr>
<th>Specimen and B.C.</th>
<th>Cosserat FE-mesh</th>
<th>Direct FE-mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td># DOFs: 507</td>
<td># DOFs: 13976</td>
<td></td>
</tr>
</tbody>
</table>

Results:
- \(\sigma_{eq} \) [MPa]:
 - Cosserat FEM, coarse mesh: 50
 - Cosserat FEM, fine mesh: 70
 - Direct FEM: 50

CPU-time:
- Cosserat FEM: 2 hours
- Direct FEM: 2 days

6 Conclusions

- Cosserat FEM is capable of describing strain softening (mesh-independent solution).
- Due to the model limitations, the homogenized Cosserat model is correct in a qualitative sense.