Copper-rubber interface delamination in stretchable electronics

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Feb. 2019
Copper-rubber interface delamination in stretchable electronics

J. Neggers*, J.P.M. Hoefnagels*, P.H.M. Timmermans†, E.J.L. van der Zanden†*, M.G.D. Geers*

*Eindhoven University of Technology, Department of Mechanical Engineering
P.O.Box 513, 5600MB, Eindhoven, The Netherlands
j.p.m.hoefnagels@tue.nl, j.neggers@tue.nl

†Philips Applied Technologies, System in Package,
High Tech Campus 7, 5656 AE Eindhoven, The Netherlands

ABSTRACT

The focus of microelectronic device development is ever more in the direction of flexible and stretchable devices. The latter enables, e.g., wearable sensors, skin-like sensor arrays, neural interfaces. Stretchable electronics consists of small rigid components in a stretchable matrix material. However it is generally observed that failure in stretchable electronic devices is strongly related to the interface integrity between metallic circuit lines and the matrix material. Therefore, the goal of this research is to obtain in depth insight into the interfacial integrity of these metal/rubber interfaces, following a two-step approach: (i) Cu/rubber bilayer interface systems and (ii) micron-scale Cu structures embedded in a rubber matrix.

To investigate Cu/rubber bilayer interface systems, a copper/rubber test system is characterized with 90° peel tests (Fig. 2), to obtain adhesion energies and rubber delamination geometries. In addition, Environmental Scanning Electron Microscopy (ESEM) is used for in-situ visualization of the progressing delamination front (Fig. 3). High adhesion energies are achieved for rough copper surfaces. It was found the interfacial integrity is largely determined by energy dissipation upon delamination, which is dominated by the formation, stretching, and rupture of ±20µm rubber fibrils. Energy dissipation in the fibrils is in competition with delamination of the fibrils from the Cu interface (Fig. 1), which in turn is governed by the complex mixed-mode loading of the interface at the micron scale (out-of-plane loading on the tops and ‘valleys’ of the copper roughness extrusions versus in-plane loading on the walls of the extrusions).

To investigate the complex loading of these interfaces in more detail, the miniature bulge test technique, a proven technique for measuring stress-strain curves of thin films, is fundamentally improved in terms of its systematic and statistical accuracy (Figs. 4 and 5). Improved statistical accuracy is achieved by measuring full field height maps using surface profilometry instead of a single interferometric measurement of the deflection of the membrane apex. Improved systematic accuracy is achieved by direct measurement of the cylindrical shape of the membrane, making assumptions regarding the boundary unnecessary. Proof of principle of this improved miniature bulge test technique will be demonstrated by presenting a meticulous characterization of the stresses and strains acting on the Cu/rubber interface. Moreover, the methodology is being expanded further to enable detailed characterization of micron-sized Cu structures embedded in a rubber matrix material, of which the first results will be presented.
Figure 1: *In-situ* ESEM image of a progressing delamination front of the copper rubber (PDMS) interface. The dominant energy dissipation mechanism is the rupture of the rubber fibrils. (Note > 80% of delaminated Cu surface still covered with rubber)

Figure 2: Schematic of the 90° peel test. An extra layer of copper is added to the copper/rubber system. The copper ends are loaded under tension in a micro-tensile stage while the force is measured.

Figure 3: Kammrath & Weiss 100 N micro-tensile stage that fits in the vacuum chamber of the ESEM, used to perform the 90° peel tests.

Figure 4: Schematic of the bulge test. A membrane is deformed using a pressure difference, the deformation is measured with surface profilometry.

Figure 5: A custom build bulge tester with a 1 × 6 mm membrane under the objective of a Sensofar P1μ2300 optical surface profilometer.