Flux evaluation in primal and dual boundary-coupled problems
van Brummelen, E.H.; van der Zee, K.G.; Garg, V.V.; Prudhomme, S.

Published: 01/01/2011

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Dec. 2018
Flux evaluation in primal and dual boundary-coupled problems

by

E.H. van Brummelen, K.G. van der Zee, V.V. Garg, S. Prudhomme
E.H. van Brummelen · K.G. van der Zee · V.V. Garg · S. Prudhomme

Flux evaluation in primal and dual boundary-coupled problems

Abstract A crucial aspect in boundary-coupled problems such as fluid-structure interaction pertains to the evaluation of fluxes. In boundary-coupled problems, the flux evaluation appears implicitly in the formulation and, consequently, improper flux evaluation can lead to instability. Finite-element approximations of primal and dual problems corresponding to improper formulations can therefore be non-convergent or display suboptimal convergence rates. In this paper, we consider the main aspects of flux evaluation in finite-element approximations of boundary-coupled problems. Based on a model problem, we consider various formulations and illustrate the implications for corresponding primal and dual problems. In addition, we discuss the extension to free-boundary problems, fluid-structure interaction, and electro-osmosis applications.

Keywords Fluid-structure interaction, dual problems, flux extraction, electro-osmosis, free-boundary problems, goal-oriented adaptivity

1 Introduction

The computational simulation of boundary-coupled problems is of fundamental importance in many engineering and scientific disciplines. Important examples include (thermal) fluid-solid interaction, e.g., in aerospace engineering [1] and in biomechanics [2], electro-mechanical and electro-mechanical-fluidic interactions in, notably, micro-electro-mechanical systems (MEMS) [3], electro-osmosis and, generally, free-boundary problems [4], in which an auxiliary free-boundary condition can be interpreted as a separate subsystem.

In all such applications, the evaluation of fluxes (or tractions), i.e., the value of a certain derivative of a function at the boundary of a domain, or a function thereof, appears. The evaluation of fluxes is a standard operation in many single field computations as well. However, as opposed to single-field problems, where the flux evaluation typically appears explicitly as a post-processing operation, in boundary-coupled problems the flux evaluation generally appears implicitly in the formulation. The implicit appearance of the flux evaluation in coupled problems has severe consequences: if the flux is evaluated incorrectly, then the corresponding formulation of the coupled problem is unstable. For numerical methods, this can in turn impede convergence or lead to suboptimal convergence rates. Dual (adjoint) problems corresponding to such formulations, e.g., in optimization or goal-adaptive-refinement procedures [5; 6], can exhibit incomprehensible behavior. In contrast, if the flux is incorrectly evaluated as a post-processing operation, this will generally have no significant consequences, unless the solution displays singularities in the vicinity of the boundary, e.g., near re-entrant corners.

Trace theory, including the treatment of fluxes in computational procedures, is in principle well established; see, e.g., [7]. Nevertheless, the aspect of flux evaluation and its pertinence to boundary-coupled problems are commonly unnoticed, or only observed in the form of the aforementioned problems.

In this paper, we consider the main aspects of flux evaluation in computational procedures for boundary-coupled problems. We illustrate the various formulations and implications on the basis of a simple model problem. In addition, we consider the properties of dual problems corresponding to the various formulations, to demonstrate the essential differences that occur in such dual problems on account of different flux treatments. To elucidate that the structure of the model problem is generic, we consider the analogy with various boundary-coupled problems, viz., free-boundary problems, fluid-structure interaction, and electro-osmosis.

The content of this paper is organized as follows: Section 2 presents the statement of the model problem. In section 3, we consider trace evaluation as a post-processing operation and we demonstrate the effect of singularities on the various trace formulations. Section 4 is concerned with an exposition on the coupled problem and dual problems corresponding to various trace evaluations. Section 5 treats the extension of the model problem to three distinct classes of boundary-coupled problems, viz., free-boundary problems, fluid-structure interaction and electro-osmosis. Section 6 provides some concluding remarks.

2 Problem statement

We consider a bounded domain $\Omega \subset \mathbb{R}^d \ (d \in \{2, 3\})$ with boundary $\partial \Omega$. The boundary is composed of two complementary parts, Γ_D and Γ_N. The model problem of concern in this paper is the flux-extraction problem: Find $u : \Omega \rightarrow \mathbb{R}$ and
\[\alpha : \Gamma_D \to \mathbb{R} \] such that
\[
-\Delta u = f \quad \text{in } \Omega \\
u = g \quad \text{on } \Gamma_D \\
\partial_n u = h \quad \text{on } \Gamma_N \\
a = \partial_n u \quad \text{on } \Gamma_D \]
where \(f : \Omega \to \mathbb{R} \), \(g : \Gamma_D \to \mathbb{R} \) and \(h : \Gamma_N \to \mathbb{R} \) represent exogenous data. Problem (1) is referred to as the flux-extraction problem, because \(\alpha \) represents the flux, \(\partial_n u \), of the solution \(u \) to the boundary-value problem (1a)–(1c). Evidently, \(\partial_n u (\cdot : \alpha) \) can be extracted from the solution of (1a)–(1c) by means of a post-processing operation. However, if \(\alpha \) is retained as a separate variable, then (1) constitutes a boundary-coupled problem, in which the boundary-value problem in (1a)–(1c) is coupled at \(\Gamma_D \) to the identity (1d).

To display the generic properties of (1), we consider the canonical weak formulation of (1a)–(1c). Let \(H^1(\Omega) \) denote the collection of square-integrable functions with square-integrable derivatives, and let \(H^0(\Gamma_D, \Omega) \) denote the sub-class of these functions that vanish on \(\Gamma_D \). The canonical weak formulation of (1a)–(1c) is:
\[
u \in \ell^1 + \ell^2(\Gamma_D, \Omega) : \quad a(u, v) = b(v) \quad \forall v \in H^0(\Gamma_D, \Omega) \quad (2)
\]
where \(\ell^1 \) denotes a linear operator, referred to as a lift operator, which assigns to any function \(\cdot \) on \(\Gamma_D \) a function in \(H^1(\Omega) \) that coincides with \(\cdot \) at \(\Gamma_D \). Furthermore, the bilinear form \(a : H^1(\Omega) \times H^1(\Omega) \to \mathbb{R} \) and the linear form \(b : H^1(\Omega) \to \mathbb{R} \) are given by
\[
a(u, v) = \int_\Omega \nabla u \cdot \nabla v, \quad b(v) = \int_\Omega f + \int_{\Gamma_N} \nu v \quad (3)
\]
where \([\cdot, \cdot]\) denotes tensor contraction. For any suitable function \(\lambda \) on the boundary \(\Gamma_D \) and sufficiently smooth \(u \), the pairing of \(\lambda \) with the flux satisfies
\[
\int_{\Gamma_D} \lambda \alpha = \int_{\partial \Omega} \lambda \partial_n u - \int_{\Gamma_N} \lambda \partial_n u = \int_{\partial \Omega} \lambda \Delta u + \int_{\partial \Omega} \nabla u \cdot \nabla \lambda - \int_{\Gamma_N} \lambda \partial_n u = \int_{\partial \Omega} [\nabla u \cdot \lambda] - \int_{\partial \Omega} \lambda \partial_n f - \int_{\Gamma_N} \lambda h = a(\lambda, \ell_\lambda) - b(\ell_\lambda) \quad (4)
\]
The second identity results from integration by parts. The second identity results from integration by parts. The first identity results from the natural operation.

\[\lambda(x, y) = \begin{cases}
4(x - 1) / 2, & 1/2 \leq x < 3/4, y = 0 \\
-4(x - 1), & 3/4 \leq x \leq 1, y = 0 \\
0, & \text{otherwise}
\end{cases} \quad (5)
\]
The exact value of the functional is \(j_{\text{ref}} = 4(\sqrt{2} - 1) \). In the second problem, \(\Omega = (-1, 1)^2 \setminus (0, 1) \times (-1, 0) \) corresponds to an L-shaped domain and the data is selected such that the exact solution be given by
\[
u(x, y) = (x^2 + y^2)^{1/3} \sin ((2/3) \tan(y/x)) - (x^2 + y^2)^{1/3} \sin((2/3) \tan(y/x)) \quad (6)
\]
Note that the solution (6) exhibits a singularity at the origin. We consider the functionals \(j_{\text{ref}}(u) \) and \(j_{\text{ref}}(u) \) corresponding to the left and right members of (4), respectively, with
\[
\lambda(x, y) = \begin{cases}
2(y + 1/2)(1 - x), & 0 \leq x \leq 1, -1/2 \leq y \leq 0 \\
0, & \text{otherwise}
\end{cases} \quad (7)
\]
The exact value of the functional is \(j_{\text{ref}} = -3(21/3 + 3)/10 \). To avoid proliferation of symbols, we use the same notation to refer to objects related to the two model problems.

We consider approximations of the two model problems by means of standard piecewise-linear finite elements. The domain \(\Omega \) is covered with a sequence of regular tessellations of uniform squares with sides of length \(h \in 2^{-n} \), which are further subdivided into four right triangles, to obtain a regular mesh of uniform triangles. Let \(S^h \) denote the standard finite-element space of continuous piecewise-linear functions on the mesh with parameter \(h \). Moreover, we denote by \(S^h_0 \), the collection of functions in \(S^h \) that vanish on \(\Gamma_D \). The finite-element approximation of (2) is:
\[
u^h \in \ell^1 + S^h_0: \quad a(u, v^h) = b(v^h) \quad \forall v^h \in S^h_0 \quad (8)
\]
where \(\ell_h \) represents a finite-element lift operator, which assigns to any function \(\cdot \) a function in \(S_h^\beta \) that coincides with the nodal-interpolant of \(\cdot \) at \(\Gamma_D \).

Figure 1 plots the error in \(j_d(u^h) \) and \(j_c(u^h) \) versus \(h \) for test case 1 (left) and test case 2 (right). It can be observed that for test case 1, which possesses a smooth underlying solution, the two expressions for the flux functional exhibit the same (optimal [10]) rate of convergence, \(|j_c(u^h) - j_{ref}| \leq c_h h^\alpha \), \(a \in \{d, e\} \). For proper flux extraction, however, the best constant in the error bound, \(c_e \), is much smaller than the constant \(c_d \) pertaining to direct flux evaluation. For test case 2, which displays a singular solution, the two flux functionals provide very different convergence behavior: the error corresponding to direct flux evaluation decays only as \(O(h^{2/3}) \) as \(h \to 0 \), while the error of flux extraction decays as \(O(h^{\alpha/3}) \). We refer to [11, §6.2] for an elaboration on this difference in the convergence behavior.

4 Primal and dual coupled problems

Next, we consider the finite-element approximation of the coupled flux-extraction problem (1). We restrict ourselves to a discussion of the finite-element formulations, but the analyses extend to the underlying weak formulations. We define \(T^h \) as the trace space of \(S^h \) on \(\Gamma_D \) i.e., the collection of functions on \(\partial \Omega \) that arises by taking the boundary values at \(\Gamma_D \) of functions in \(S^h \). We first consider a finite-element approximation based on the naive weak formulation:

\[
(u^h, \alpha^h) \in (\ell_h^I + S_{0, \Gamma_D}^\alpha) \times T^h \quad \text{such that} \quad a(u^h, v^h) + \int_{\Gamma_D} (\partial_n u^h - \alpha^h) \beta^h = b(v^h) \quad \forall (v^h, \beta^h) \in S_{0, \Gamma_D}^\alpha \times T^h
\]

with \(a(\cdot, \cdot) \) and \(b(\cdot) \) according to (3). Formulation (9) represents an obvious extension to the weak formulation (8) of the boundary-value problem (1a)–(1c) by a weak enforcement of the identity (1d). Formulation (9) defines \(\alpha^h \) such that the functional \(\beta^h \mapsto \int_{\Gamma_D} \alpha^h \beta^h \) corresponds to direct flux evaluation. We note in advance that the formulation is suspect, however, in view of the explicit appearance of \(\partial_n u \), which represents an unbounded operator from \(H^1_0(\Omega) \) to \(H^{-1/2}(\Gamma_D) \); see also section 2. This implies that the final term in the left member of (9) can be unbounded for admissible \(u \) and \(\beta \).

In conjunction with (9) and a linear functional of interest, \(J(u, \alpha) \), we also consider the corresponding dual problem:

\[
(w^h, \gamma^h) \in S_{0, \Gamma_D}^\beta \times T^h \quad \text{such that} \quad a(x^h, w^h) + \int_{\Gamma_D} (\partial_n x^h - \gamma^h) \beta^h = J(x^h, \delta^h) \quad \forall (x^h, \delta^h) \in S_{0, \Gamma_D}^\beta \times T^h
\]

In comparison with the (primal) problem (9), the test and trial functions have exchanged positions in the bilinear form in the left member of the dual problem (10).

An alternative formulation of the coupled problem is provided by:

\[
(u^h, \alpha^h) \in (\ell_h^I + S_{0, \Gamma_D}^\alpha) \times T^h \quad \text{such that} \quad a(u^h, v^h) + \int_{\Gamma_D} \alpha^h \beta^h = b(v^h + \ell_h^I)
\]

\[
\forall (v^h, \beta^h) \in S_{0, \Gamma_D}^\alpha \times T^h
\]

Formulation (11) implicitly defines \(\alpha^h \) such that the functional \(\beta^h \mapsto \int_{\Gamma_D} \alpha^h \beta^h \) corresponds to flux extraction in accordance with the final expression in (4). Note that the formulation does not explicitly involve the term \(\partial_n u^h \).

To derive the associated dual problem, we first reformulate (11). To this end, we note that the space \(S_{0, \Gamma_D}^\beta \times T^h \) is isomorphic to \(S^h \). Given the linear lift operator \(\ell_h^I \), a natural isomorphism is provided by:

\[
\mathcal{I} : S_{0, \Gamma_D}^\beta \times T^h \to S^h \quad \mathcal{I}(v, \beta) = v + \ell_h^I
\]

\[
\mathcal{I}^{-1} : S^h \to S_{0, \Gamma_D}^\beta \times T^h \quad \forall v \in S^h
\]

where \((\cdot) |_{\Gamma_D} \) denotes the trace of \(\cdot \) on \(\Gamma_D \). Hence, (11) can be equivalently recast as:

\[
(u^h, \alpha^h) \in (\ell_h^I + S_{0, \Gamma_D}^\alpha) \times T^h \quad \text{such that} \quad a(u^h, v^h) - \int_{\Gamma_D} \alpha^h v^h = b(v^h) \quad \forall v^h \in S^h
\]

The dual problem, associated with problem (12) and linear functional \(J(u, \alpha) \), is given by:

\[
w^h \in S^h \quad \text{such that} \quad a(x^h, w^h) - \int_{\Gamma_D} \delta^h w^h = J(x^h, \delta^h) \quad \forall (x^h, \delta^h) \in S_{0, \Gamma_D}^\beta \times T^h
\]

One can infer that (13) corresponds to a weak formulation of a Poisson problem for \(w^h \) with a Neumann condition on \(\Gamma_D \) and a Dirichlet condition on \(\Gamma_D \). The naive dual (10) does not admit such an interpretation as a boundary-value problem.

To illustrate the difference between the dual formulations (10) and (13), we reconsider test case 1 from the previous section. Figure 2 plots the dual solution obtained from the naive formulation (10) (left) and from the appropriate formulation (13) (right) for a mesh with \(h = 2^{-4} \). It can be observed that the dual solution of the naive formulation (10) exhibits unexpected non-smooth behavior near the boundary, as opposed to the solution of (13).

5 Extensions

To show that the structure of the model problem in Sections 2–4 is generic, we consider in this section the analogy between the model problem and three distinct classes of boundary-coupled problems, viz., free-boundary problems, fluid-structure interaction and electro-osmosis.
5.1 Free-boundary problems

For definiteness, we consider a model free-boundary problem referred to as the Bernoulli free-boundary problem [4] or Alt-Caffarelli problem [12]. This problem consists in finding, simultaneously, a function \(u : \Omega \rightarrow \mathbb{R} \) and its domain of definition, \(\Omega \), with boundary \(\partial \Omega \) consisting of a fixed part \(\Gamma_N \) and a variable part \(\Gamma_F \) (the free boundary), such that

\[
\begin{align*}
-\Delta u &= f & \text{in } \Omega & \quad (14a) \\
\partial_n u &= h & \text{on } \Gamma_N & \quad (14b) \\
u &= g & \text{on } \Gamma_F & \quad (14c) \\
\partial_n u &= h & \text{on } \Gamma_F & \quad (14d)
\end{align*}
\]

where \(f, h : \mathbb{R}^n \rightarrow \mathbb{R} \) represents sufficiently smooth data such that \(h > 0 \) on \(\Gamma_F \). Moreover, for simplicity, we assume \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) to be constant. Comparing (14) with the flux-extraction problem (1), we note that (the position of) \(\Gamma_F \) plays a role similar to \(\alpha \). However, unlike (1), which is a one-way coupled problem, the free-boundary problem (14) is two-way coupled, and (14a)–(14d) must be treated simultaneously. Based on the discussion in Section 4, it is natural to consider a formulation based on (14a)–(14c) and treat (14d) using flux extraction (cf. (11)):

\[
(u, \Omega) \in (\ell_g + H^1_{0, \Gamma_F}(\Omega)) \times \mathcal{O} : \quad \begin{align*}
\alpha(\Omega; u, v) + \beta(\Omega; v, \ell_\delta) &= \int_{\Gamma_F} h \beta = 0 \\
\forall (v, \beta) &\in H^1_{0, \Gamma_F}(\Omega) \times T
\end{align*} \quad (15)
\]

where \(\mathcal{O} \) is a set of admissible domains, \(T \) is a suitable space of functions on \(\Gamma_F \), and \(\alpha(\cdot, \cdot, \cdot) \) and \(\beta(\cdot, \cdot, \cdot) \) are the same as in (3), except that these forms now explicitly include the dependence on the unknown domain \(\Omega \). Assuming that \(H^1_{0, \Gamma_F}(\Omega) \times T \) is isomorphic to \(H^1(\Omega) \), we can recast (15) as:

\[
(u, \Omega) \in (\ell_g + H^1_{0, \Gamma_F}(\Omega)) \times \mathcal{O} :
\begin{align*}
\alpha(\Omega; u, v) + \beta(\Omega; v) &= 0 \\
\forall v &\in H^1_{0, \Gamma_F}(\Omega)
\end{align*} \quad (16)
\]

For nonlinear problems such as the free-boundary problem (14), the dual formulation is based on the linearized adjoint. We will show that the structure of the linearization of (14) is very similar to the model problem (1). Let us remark that the linearization of free-boundary problems is nontrivial owing to their geometric nonlinearity. One method of linearization uses techniques from shape calculus [13; 14].

Without proof, we assert that the linearization of (14) around an approximation state \((\bar{u}, \bar{\Omega})\) in compliance with

\[
\begin{align*}
-\Delta \bar{u} &= f & \text{in } \bar{\Omega} & \quad (18a) \\
\partial_n \bar{u} &= h & \text{on } \Gamma_N & \quad (18b) \\
u + h \alpha &= g & \text{on } \Gamma_F & \quad (18c) \\
\partial_n u &= h & \text{on } \Gamma_F & \quad (18d)
\end{align*}
\]

with \(\bar{\Gamma}_F \) the approximation to the free boundary corresponding to \(\bar{\Omega} \), is given by:

\[
\begin{align*}
-\Delta u &= f & \text{in } \bar{\Omega} & \quad (18a') \\
\partial_n u &= h & \text{on } \Gamma_N & \quad (18b') \\
u + h \alpha &= g & \text{on } \bar{\Gamma}_F & \quad (18c') \\
\partial_n u &= h & \text{on } \bar{\Gamma}_F & \quad (18d')
\end{align*}
\]

where \(c = f + \partial_n h + k h \) and \(k \) denotes the additive curvature (sum of \(n - 1 \) curvatures) of \(\bar{\Gamma}_F \). Note that (18) is posed on the fixed domain \(\bar{\Omega} \) and, instead of the unknown free-boundary, we now have an unknown boundary field \(\alpha : \bar{\Gamma}_F \rightarrow \mathbb{R} \), which represents a perturbation of \(\bar{\Gamma}_F \) in the normal direction.

The linearized free-boundary problem in (18) is similar to (1), in that two conditions hold on \(\bar{\Gamma}_F \), involving both the state \((\bar{u}, \bar{\Omega})\), the flux \((\partial_n u, u)\) and an auxiliary variable \(\alpha \). As opposed to (1), however, the auxiliary variable appears in both boundary conditions (18c) and (18d). The key aspect in the analogy to (1), however, pertains to the fact that the flux in (18d) is properly evaluated by means of flux extraction. This leads to the formulation:

\[
\begin{align*}
\{(u, \alpha) \in (\ell_g - \ell_h + H^1_{0, \bar{\Gamma}_F}(\Omega)) \times \bar{T} : \\
&\quad a(\bar{\Omega}; u, v) - \int_{\bar{\Gamma}_F} \text{cov} = b(\bar{\Omega}; v) + \int_{\bar{\Gamma}_F} \text{flux} \forall v \in H^1(\bar{\Omega}) \quad (19)
\end{align*}
\]

In (19), we have replaced the original test space \(H^1_{0, \bar{\Gamma}_F}(\Omega) \times \bar{T} \) by \(H^1(\bar{\Omega}) \), under the standing assumption that these two spaces are isomorphic; cf. (12) and (16).

Based on (19), the dual problem pertaining to a linear functional \(J(u, \alpha) \) reads:

\[
\begin{align*}
\{ & (x, \delta) \in (\ell_g - \ell_h + H^1_{0, \bar{\Gamma}_F}(\Omega)) \times \bar{T} \\
&\quad \forall (x, \delta) \in (-\ell_h + H^1_{0, \bar{\Gamma}_F}(\Omega)) \quad (20)
\end{align*}
\]

Note that the relation between \(u \) and \(H^1(\bar{\Omega}) \) in (19) can be extended to \(x \) and \(\delta \) in the test space of the dual problem (20).

To facilitate the extraction of a corresponding boundary-value problem from (20), we introduce the change of variables \((x, \delta) = (\bar{x} + \ell_\delta, -\delta/h)\), to recast (20) into:

\[
\begin{align*}
w &\in H^1(\bar{\Omega}) : \quad a(\bar{\Omega}; \bar{x} + \ell_\delta, w) + \int_{\bar{\Gamma}_F} \frac{\delta}{h^2} w = J(\bar{x} + \ell_\delta, -\frac{\delta}{h}) \\
&\quad \forall (\bar{x}, \delta) \in H^1_{0, \bar{\Gamma}_F}(\bar{\Omega}) \times \bar{T} \quad (21)
\end{align*}
\]

The isomorphism between \(H^1_{0, \bar{\Gamma}_F}(\bar{\Omega}) \times \bar{T} \) and \(H^1(\bar{\Omega}) \) yields

\[
\begin{align*}
w &\in H^1(\bar{\Omega}) : \\
a(\bar{\Omega}; \bar{x}, w) + \int_{\bar{\Gamma}_F} \frac{\delta}{h^2} \bar{x} w = J(\bar{x}, -\frac{\delta}{h}) &\quad \forall \bar{x} \in H^1(\bar{\Omega}) \quad (22)
\end{align*}
\]

One can infer that (22) corresponds to a weak formulation of a Poisson problem for \(w \) with a Neumann condition on \(\Gamma_N \) and a Robin condition on \(\bar{\Gamma}_F \); see also [13].
5.2 Fluid-structure interaction

We next consider the analogy between the model problem (1) and a fluid-structure interaction problem, in which the incompressible Navier–Stokes equations are coupled to an elasticity problem. The incompressible Navier–Stokes equations are given by

\[\rho u' + \text{div}\rho uu + \nabla p - \nu \Delta u = f \quad \text{in } \Omega \]
\[\text{div} u = 0 \quad \text{in } \Omega \]
where \(u \) and \(p \) denote the fluid velocity and pressure, respectively, and \((\cdot)'\) denotes the temporal derivative. Moreover, \(\rho \) and \(\nu \) respectively denote the homogeneous fluid density and viscosity. The solid problem is specified on a reference domain \(\Xi \) by

\[\eta \varphi'' - \text{Div} P(\varphi) = F \quad \text{in } \bar{\Xi} \]

where \(\eta \) denotes the structure density in the reference configuration, \(P \) denotes the first Piola–Kirchhoff stress tensor, \(\varphi : \bar{\Xi} \to \mathbb{R}^3 \) represents the displacement field and the map \(\varphi \mapsto P(\varphi) \) is a constitutive relation. The actual domain corresponding to (24) is \(\Xi = \bar{\Xi} + \varphi(\bar{\Xi}) \). In (24) and further, we adhere to the customary notation that the divergence and gradient operators in the reference configuration are indicated by capitalized initials. The Navier–Stokes equations (23) and the elasticity problem (24) are coupled at the interface \(\Gamma = \partial Q \cap \partial \Xi \) by the kinematic and dynamic interface conditions:

\[u \circ M = \varphi' \quad \text{on } \bar{\Gamma} \]
\[((pm - \nu \partial_n u) d\bar{\Gamma}) \circ M = PN d\bar{\Gamma} \quad \text{on } \bar{\Gamma} \]

where \(M \) denotes the map \(\Xi \mapsto \bar{\Xi} + \varphi(\bar{\Xi}) \) between the structural reference domain, \(\Xi \), and the actual domain, \(\bar{\Xi} \), and \(\bar{\Gamma} = M^{-1}\Gamma \) is the representation of the interface in the reference domain. Moreover, \(d\bar{\Gamma} \) and \(d\Gamma \) denote the surface measures in the actual and reference domains, respectively, and \(n \) and \(N \) respectively denote the outward unit normal vectors on the boundaries of the fluid domain and of the structural reference domain. We suppose that the dynamic condition (25b) is imposed as a natural boundary condition on the structure subproblem. Moreover, for transparency and without loss of generality, we assume that (24) satisfies homogeneous Dirichlet boundary conditions on \(\partial Q = \partial \Xi \setminus \Gamma \). Considering a fixed time interval \((0, \tau)\), the weak formulation of (24) subject to the aforementioned boundary conditions reads:

\[\varphi : (0, \tau) \to [H^1_0(\bar{\Xi})]^d : \]
\[a_s(\varphi, w) = b_s \quad \forall w \in [H^1_0(\bar{\Xi})]^d \]

everywhere in \((0, \tau)\), where

\[a_s(\varphi, w) = \int_{\bar{\Xi}} [\eta \varphi'' + w] + \int_{\bar{\Xi}} [\text{Grad}w, P], \]
\[b_s(w) = \int_{\bar{\Xi}} [F, w] + \int_{\bar{\Xi}} [((pm - \nu \partial_n u)J) \circ M, w], \]

with \(J = d\bar{\Gamma}/d\Gamma \). We suppose that (25a) is imposed as a Dirichlet boundary condition on the fluid subproblem (23). Furthermore, without loss of generality, we assume that (23) complies with homogeneous Neumann boundary conditions on the complementary part of the boundary. This leads to the following weak formulation:

\[(u, p) : (0, \tau) \to (L^2(\Omega))^d \times L^2(\Omega) : \]
\[a_t(u, p, v, q) = b_t(v, q) \quad \forall (v, q) \in (H^1_0(\bar{\Xi})^d \times L^2(\Omega)) \]

everywhere in \((0, \tau)\) with

\[a_t(u, p, v, q) = \int_{\Omega} [pu'] + \int_{\Omega} [\text{div}(\rho uu), v] + \int_{\Omega} [\nabla u, \nabla v] \]
\[- \int_{\Omega} p \text{div} v - \int_{\Omega} q \text{div} u \]
\[b_t(v, q) = \int_{\Omega} [f, v] \]

It is to be noted that the kinematic condition (25a) is imposed by means of the lift operator \(\ell_{\omega \in M^{-1}} \). Similar to (4), the interface contribution to the structural load functional, \(b_s \), can be recast into:

\[\int_{\bar{\Gamma}} [((pm - \nu \partial_n u)J) \circ M, w] = \int_{\bar{\Gamma}} [pm - \nu \partial_n u, w \circ M^{-1}] \]
\[= a_t(u, p, \ell_{\omega \in M^{-1}}, q) - b_t(\ell_{\omega \in M^{-1}}, q) \]

for arbitrary \(q \). The first identity follows from a transformation of the integral from \(\bar{\Gamma} \) to \(\Gamma \).

In analogy with the model problem, the coupling between the fluid and the structure occurs through a flux functional in the structure subproblem, and this flux functional is appropriately evaluated by pairing the residual functional of the fluid subproblem with a lift of the structure test function. Moreover, direct evaluation of the flux \(pm - \nu \partial_n u \) corresponds to an unbounded operator. We refer to [15; 16] for further elaboration on tractions evaluation in fluid-structure interaction.

We remark that the traction extraction encoded by the final expression in (26) actually corresponds to the continuity of the test function between the fluid and structure subsystems; see, for instance, [17]. In so-called generalized-continuum formulations of fluid-structure interaction, such continuity of test (and trial) functions is intrinsic.

5.3 Electro-osmosis

Finally, we consider the analogy between the model problem in (1) and electro-osmosis applications. Electro-osmosis refers to the phenomenon that a fluid in a channel moves under the effect of an electric field aligned with the channel wall, by virtue of the electric double layer (the Debye layer) that develops between the fluid and the channel wall. The electric field induces a force on the charged particles of the double layer, and viscous forces in the fluid in turn drive the bulk fluid in the direction of the electric field.

A standard model of electro-osmosis is the Helmholtz-Smoluchowski wall-slip model. This model assumes that the body-force term in the Navier–Stokes equations engendered by the electric double layer can be replaced by an effective slip velocity on the boundary, given by \(u_{wall} = (\nu \Psi_0 / \nu) E \), with \(\nu \) and \(\nu \) being the dielectric constant and viscosity of the fluid, respectively, \(\Psi_0 \) the electric zeta potential of the wall and \(E \) the applied electric field. This approximation has been validated through both experiments and numerical simulations.
The Helmholtz–Smoluchowski model of electro-osmosis translates into a boundary-coupled problem of the form:

\[-\text{div}(\sigma \nabla \phi) = 0 \quad \text{in } \Omega \quad (27a)\]

\[\partial_n \phi = 0 \quad \text{on } \Gamma \quad (27b)\]

\[-\Delta u + \nabla p = 0 \quad \text{in } \Omega \quad (27c)\]

\[-\text{div} u = 0 \quad \text{in } \Omega \quad (27d)\]

\[u = -\nabla \phi \quad \text{on } \Gamma \quad (27e)\]

where \(\sigma\) denotes the electric conductivity of the fluid, \(\phi\) denotes the electric potential and \(\Gamma\) represents the channel wall. The auxiliary boundary conditions are irrelevant for the exposition below. We refer to [19] for further details, including different formulations and an elaboration of the numerical experiments in this section.

A fundamental complication in the numerical approximation of (27) concerns the enforcement of the Dirichlet boundary condition (27e) for the fluid. A naive approach would be to impose this condition strongly in the space for \(u\). Accordingly, (27) would be condensed into the weak formulation:

\[(\phi, u, p) \in H^1(\Omega) \times (L^2(\Omega) \cap H^1(\Omega)) \times L^2(\Omega) \quad (28)\]

where

\[a_t(u, p, v, q) = \int_\Omega [\nabla u \cdot \nabla v] - \int_\Omega p \text{div} v - \int_\Omega q \text{div} u \quad (29)\]

\[a_c(\phi, \psi) = \int_\Omega \phi \text{div} \psi \quad (30)\]

To elucidate the structure of (28), we modify the formulation by imposing the Dirichlet boundary condition (27e) by via a Lagrange multiplier. We then obtain the following equivalent formulation:

\[(\phi, u, p) \in H^1(\Omega) \times H^1(\Omega) \times L^2(\Omega) \quad (31)\]

\[a_t(u, p, v, q) + a_c(\phi, \psi) + \int_T [u + \nabla \phi, \beta] = 0 \quad (29)\]

\[\forall(\psi, v, q, \beta) \in H^1(\Omega) \times H^1(\Omega) \times L^2(\Omega) \times T \quad (30)\]

where \(T\) represents a suitable (vector-valued) trace space on \(\Gamma\). Formulation (29) conveys that the normal component of \(u\) in the above formulations corresponds to a direct evaluation of the electric flux \(\partial_n \phi\). In formulation (29), the direct flux evaluation is manifested by the (unbounded) functional \(\beta \rightarrow \int_T ([u, n] + \partial_n \phi) [\beta, n]\). In a similar manner as for the model problem, the dual formulation of (29) (or (28)) exhibits unstable behavior; see Figure 3. We remark that the enforcement of the tangential component generally does not present a problem, by virtue of tangential integration-by-parts identities. Detailed discussion of this matter is beyond the scope of this paper; see [19].

To avoid direct flux evaluation, a formulation based on flux extraction can be considered:

\[(\phi, u, p) \in H^1(\Omega) \times H^1(\Omega) \times L^2(\Omega) \quad (31)\]

\[a_t(u, p, v, q) + a_c(\phi, \psi) + \int_T [u + \nabla \phi, \beta] = 0 \quad (29)\]

\[\forall(\psi, v, q, \beta) \in H^1(\Omega) \times H^1(\Omega) \times L^2(\Omega) \times T \quad (30)\]

Note that the test-function pair \((\psi_0, \beta)\) can not be combined into a single test function in \(H^1(\Omega)\), because \(\psi_0\) appears separately in (30). However, if we identify \(\beta\) with the rescaled trace of a function \(v \in H^1_0(\Omega)\) according to \(\beta = \frac{1}{\gamma} v\), then we can derive the consistent penalty formulation:

\[(\phi, u, p) \in H^1(\Omega) \times H^1(\Omega) \times L^2(\Omega) \quad (31)\]

\[a_t(u, p, v, q) + a_c(\phi, \psi + \frac{1}{\gamma} v) + \int_T [u + \nabla \phi, t, v] = 0 \quad (29)\]

\[\forall(\psi, v, q, \beta) \in H^1(\Omega) \times H^1(\Omega) \times L^2(\Omega) \quad (30)\]

One can show that \((\phi, u, p)\) converges to the solution of the electro-osmosis problem as \(\epsilon \rightarrow 0\). The modified formulation (31) allows a convenient implementation of both the primal and corresponding dual problems. Essentially, formulation (31) replaces the Dirichlet condition (27e) by the mixed condition

\[(\partial_n u - p \mathbf{n} + \frac{1}{\gamma} u + \nabla \phi) = 0 \quad (29)\]

Equation (32) corresponds to regularization of the boundary condition (27e) by means of a penalty method.

It is to be mentioned that an alternative method for the weak enforcement of Dirichlet boundary conditions is provided by Nitsche’s Verfahren [20; 21]. However, Nitsche’s Verfahren relies on a direct-flux-type term in the variational formulation. Accordingly, the corresponding bilinear or semilinear form is unbounded, unless the functional setting is appropriately modified.

To illustrate the difference between the dual problems corresponding to the unstable formulation (28) and the regularized formulation (31), we consider an electro-osmosis problem on the quadrangle \(\Omega = (0, 5) \times (0, 1)\). The electric conductivity is set to \(\sigma(x_1, x_2) = 1 + x_1\). The functional of interest that appears on the right-hand side of the dual problem is chosen here as the flow rate \(J(\phi, u, p) = \int_{\Gamma_0} [u, n] \) with \(\Gamma_0 = \{(x_1, x_2) \in \partial \Omega : x_1 = 5\}\). The regularization parameter is set to \(\epsilon = 10^{-10}\). Simulations are performed using the \texttt{libMesh} Finite Element library [22]. Figures 3 and 4 present the dual electric fields for the unstable formulation (28) based on direct flux evaluation and the regularized formulation (31), respectively. Figure 3 illustrates that direct flux evaluation leads to oscillations in the dual electric field at the channel wall. In contrast, the dual solution obtained from the regularized formulation (31) in Figure 4 is smooth. This dual solution is appropriate for error estimation and adaptive mesh refinement; see [19].

6 Conclusion

Motivated by the fundamental importance of flux evaluation in boundary-coupled problems, we presented an analysis of flux-evaluation formulations. Based on a generic model problem, we showed that direct flux evaluation is characterized by an unbounded operator. We moreover established that proper flux extraction, corresponding to a pairing of the residual functional of the boundary-value problem with a lifted test function, does not suffer from this deficiency.

By means of numerical experiments, we showed that in finite-element approximations, direct flux evaluation and flux extraction yield a different behavior in the approximate solutions. For a problem with a regular solution, both methods exhibit the same optimal rate of convergence under mesh refinement, but the constant in the error bound is much smaller for flux extraction than for direct flux evaluation. For a problem with a singular solution, flux extraction yields a faster...
rate of convergence: for direct flux evaluation, the error decays as $O(h^{5/3})$, while for flux extraction the error decays as $O(h^{4/3})$, as the mesh width h tends to 0.

For the model coupled problem, we showed that solutions to dual problems corresponding to the two flux-evaluation formulations behave very differently. We established that the dual problem associated with flux extraction represents a well-defined boundary-value problem, as opposed to the dual problem pertaining to direct flux evaluation. In the numerical experiments, we showed that the dual solution associated with direct flux evaluation displays non-smooth behavior near the boundary, while the dual solution associated with flux extraction exhibits a smooth solution.

Finally, we considered the extension of the results for the generic model problem to three classes of boundary-coupled problems, viz., free-boundary problems, fluid-structure interaction, and electro-osmosis.

Acknowledgments

Harald van Brummelen expresses his gratitude to Dr. Trond Kvamsdal of the Department of Mathematical Sciences of the Norwegian University of Science and Technology for many stimulating discussions on the subject of traction extraction.

Kris van der Zee acknowledges the support of the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO) via VENI grant 639.031.033.

References

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-37</td>
<td>M.E. Hochstenbach, N. McNinch, L. Reichel</td>
<td>Discrete ill-posed least-squares problems with a solution norm constraint</td>
<td>June '11</td>
</tr>
<tr>
<td>II-38</td>
<td>T. Fatima, A. Muntean, M. Ptashnyk</td>
<td>Unfolding-based corrector estimates for a reaction-diffusion system predicting concrete corrosion</td>
<td>June '11</td>
</tr>
<tr>
<td>II-40</td>
<td>V. Chalupecký, A. Muntean</td>
<td>Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence</td>
<td>June '11</td>
</tr>
<tr>
<td>II-41</td>
<td>E.H. van Brummelen, K.G. van der Zee, V.V. Garg, S. Prudhomme</td>
<td>Flux evaluation in primal and dual boundary-coupled problems</td>
<td>July '11</td>
</tr>
</tbody>
</table>