Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

Nicolai, H.T.; Hof, A.J.; Lu, M.; Blom, P.W.M.; de Vries, R.J.; Coehoorn, R.

Published in:
Applied Physics Letters

DOI:
10.1063/1.3663563

Published: 01/01/2011

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 03. Nov. 2018
Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

Citation: Appl. Phys. Lett. 99, 203303 (2011); doi: 10.1063/1.3663563
View online: http://dx.doi.org/10.1063/1.3663563
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v99/i20
Published by the American Institute of Physics.

Related Articles
Charge transport in dual-gate organic field-effect transistors
Charge transport in dual-gate organic field-effect transistors
Excellent carrier mobility of 0.24cm2/Vs in regioregular poly(3-hexylthiophene) based field-effect transistor by employing octadecyltrimethoxysilane treated gate insulator
Excellent carrier mobility of 0.24cm2/Vs in regioregular poly(3-hexylthiophene) based field-effect transistor by employing octadecyltrimethoxysilane treated gate insulator
High-performance short channel organic transistors using densely aligned carbon nanotube array electrodes

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT
The charge transport in a polyspirobifluorene derivative with copolymerized N,N',N'-tetraaryldiamino biphenyl (TAD) hole transport units is investigated as a function of the TAD content. For TAD concentrations larger than 5%, guest-to-guest transport is observed. It is demonstrated that in this regime the charge carrier density dependent mobility can be described consistently with the extended Gaussian disorder model, with a density of hopping sites which is proportional to the TAD concentration and comparable to the molecular density. © 2011 American Institute of Physics. [doi:10.1063/1.3663563]

Since their discovery, organic semiconductors have been investigated intensively and they are today finding their way into applications such as displays and lighting. A prerequisite for full-color applications is an efficient blue emitter. Polyfluorenes (PF) form an attractive class of blue emitters due to their wide band gap and high photoluminescence efficiency. They are commonly used as blue emitters due to their wide band gap and high photoluminescence efficiency. The wide band gap, however, also complicates the charge injection; it is difficult to achieve efficient injection for both electrons and holes. Especially hole injection can be problematic in polyfluorenes due to the typical point defects and traps in the polymer chain. Triarylamines are known to be good hole conductors and are commonly used as host layers. The hole mobilities up to $3 \times 10^{-7} \text{m}^2/\text{Vs}$ have been measured in fluorine-containing triarylamines copolymers. Furthermore, the hole transport can be tuned by varying the hole density of states between point-like sites on a cubic lattice. The question arises what the relationship is between the site density parameter N_t and the physical density of localized molecular states between which the hopping takes place. In this letter, we address this question by studying the hole transport in a series of polyealkoxySpirobifluorene-N,N',N'-tetraaryldiamino biphenyl (PSF-TAD) copolymers. These materials belong to a larger class of PF derivatives within which the injection and transport of holes is modified by the incorporation of arylenes, either blended in the active layer or incorporated into the polymer chain. Triarylamines are known to be good hole conductors and are commonly used as hole transport layers. Hole mobilities up to $3 \times 10^{-7} \text{m}^2/\text{Vs}$ have been measured in fluorene- and triarylamines copolymers. Furthermore, the hole transport can be tuned by varying the amine content, under the condition that their HOMO energy is higher than that of the host polymer. At low concentrations the amine units act then as hole traps and reduce the hole current, whereas above a critical concentration, typically $\sim 3\%$, percolation can take place between the amine units and the hole transport will become governed by hole-to-host hopping, leading to an increase of the mobility with increasing amine concentration. The EGDM transport parameters are then expected to be related to the guest DOS. For sufficiently dilute systems, one might envisage that σ is independent of the amine concentration and that N_t is equal to, or at least proportional to, the guest density. However, such relationships have so far not been established experimentally. We have studied the guest density dependence of σ and N_t for systems containing TAD as the hole transporting unit.

The TAD hole transport unit studied here is functionalized with two tert-butyl groups. Its structure is depicted in the figure.
inset of Fig. 1(a). The structure of the complete copolymer is published elsewhere.\(^{20}\) The HOMO levels of PSF and the TAD unit have been estimated at \(-5.6\) eV and \(-5.4\) eV, respectively.\(^{21,22}\) The TAD concentration was varied from 5 to 12.5 mol. %, enabling a systematic study of the influence of the TAD concentration on the guest-to-guest hole transport. Hole-only devices were fabricated by first spin-coating a layer of PEDOT:PSS on a glass substrate with a patterned indium tin oxide layer. The PSF-TAD copolymer layers were subsequently spin-coated from a toluene solution in a nitrogen environment. Hole-only devices with a PSF-TAD layer thickness equal to (approximately) 80, 120, 200, and 280 nm were studied. The top contacts were evaporated through a shadow mask at a base pressure of approximately \(10^{-6}\) mbar and consisted of a 20 nm layer of palladium capped with an 80 nm gold layer. The high work function of palladium ensures that there is no electron injection into the LUMO level of the polymer and that the device current is determined by the hole transport. No electroluminescence was observed, which confirms the absence of electron injection.

Fig. 1(a) shows the room temperature current-density–voltage (\(J–V\)) characteristics of devices with an active layer thickness of \(\sim 200\) nm and a TAD concentration of 5% and 7.5%, and Fig. 1(b) shows the current density as a function of the TAD concentration measured at 10 V. As a reference, also the results for the PSF host polymer are given (0% TAD concentration). As in an earlier study for a similar type of copolymer, the inclusion of 5% TAD lowers the hole current by approximately one order of magnitude compared to the hole current in the pure polyspirobifluorene polymer.\(^{18}\) No data are available for TAD concentrations below 5%. Therefore, it cannot firmly be established whether at 5% the TAD units act still as traps for the hole transport through the polyspirobifluorene. However for TAD concentrations of 7.5% and above, the hole transport increases with increasing TAD concentration, demonstrating the occurrence of guest-to-guest hopping for these concentrations. A simplified analysis of the \(J(V)\) curves, using the well-known Mott-Gurney (MG) equation which neglects diffusion and which assumes a constant mobility,\(^{23}\) gives rise to an effective mobility of approximately \(8 \times 10^{-11}\) m\(^2\)/Vs for the pure (0%) reference polymer, in reasonable agreement with the result of earlier time-of-flight measurements on a similar copolymer.\(^{24}\) In that study the mobility could be increased beyond the host mobility by the inclusion of 50% TAD.

To take the effects of disorder on the carrier density dependence and field dependence of the mobility and the diffusion coefficient as described within the EGDM into account, the numerical drift-diffusion model developed in Ref. 25 has been used. We have analyzed the voltage, temperature, and layer thickness dependence of the current density to obtain the parameters describing the mobility function in the guest-to-guest hopping regime (TAD concentration > 5%). The polymer with 5% TAD is included, although it is not \(a\ priory\) clear whether the transport is then already well within this regime. The PEDOT:PSS contact is assumed to be Ohmic. In the following, \(V_{\text{bi}}\) is the built-in voltage, \(\mu_0(T)\) is the mobility at temperature \(T\) in the limit of zero field and zero carrier density, and \(k_B\) is the Boltzmann constant. For each polymer, a least-squares method was first used to fit the dependence on voltage, thickness and temperature to the EGDM equations using a common set of parameters \(\sigma\) and \(N_h\), but allowing \(\mu_0(T)\) to be determined by the fitting. Different samples were allowed to have somewhat different temperature-independent values of \(V_{\text{bi}}\). The resulting values of \(\mu_0(T)\) were then fit to the expression \(\mu_0(T) = \frac{\mu_0^0 \exp[-C\sigma^2]}{T^2}\), with \(\sigma \equiv \sigma / (k_B T)\), as expected within the EGDM. Using this expression for \(\mu_0(T)\), Fig. 2 shows the measured and calculated temperature dependence of the \(J(V)\) curves for a 198 nm device with a TAD concentration of 7.5%, with \(V_{\text{bi}} = 1.6\) V. The inset shows the measured and calculated 1/\(T^2\) dependence of \(\mu_0(T)\). For the systems studied, \(C\) ranged from \(-0.42\) to \(-0.47\), with an error margin of approximately \(\pm 0.04\). The values found are close to the value 0.42 given in Ref. 12 or 4/9 in Ref. 9. At room temperature, \(\mu_0(T)\) was found to increase approximately 20-fold as the concentration increased from 5% to 12.5%. Assuming constant values of \(\sigma\) (see below) and of \(C\), \(\mu_0^0\) would then be expected to show a similar increase. However, in view of the error margin in the \(C\)-parameter, the required high-temperature extrapolation could not be made with sufficient accuracy. The values of \(V_{\text{bi}}\) ranged from 1.45 to 1.75 V for the various samples, perhaps because of variations of the dipole layer formed at the cathode interface. Well above \(V_{\text{bi}}\), the shape of the \(J(V)\) curves is almost independent of \(V_{\text{bi}}\), greatly facilitating the accurate determination of the EGDM parameters.
Fig. 2. Temperature dependent hole transport at 7.5% TAD and fits to the EGDM, for a 198 nm device. The inset shows the $1/T^2$ dependence of $\mu_0(T)$.

Fig. 3 shows the optimal values of N_t and σ for each polymer. The error margins indicate the range of values of N_t and σ for which the fit error (defined as the sum of the squares of the logarithmic deviation) is within 3% of the experimental uncertainties. The authors wish to acknowledge financial support from the European Commission under contracts IST-004607 (OLLA) and FP7-213708 (AEVIOM).

![Diagram](image-url)

FIG. 3. (Color online) Optimal values of N_t and σ for each polymer. The experimental uncertainties are similar to the symbol sizes, or as indicated. The dashed and dotted lines are a guide to the eye.