Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

Citation for published version (APA):

DOI:
10.1063/1.3663563

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Jun. 2020
Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

Citation: Appl. Phys. Lett. 99, 203303 (2011); doi: 10.1063/1.3663563
View online: http://dx.doi.org/10.1063/1.3663563
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v99/i20
Published by the American Institute of Physics.

Related Articles
Charge transport in dual-gate organic field-effect transistors
Charge transport in dual-gate organic field-effect transistors
Excellent carrier mobility of 0.24cm2/Vs in regioregular poly(3-hexylthiophene) based field-effect transistor by employing octadecyltrimethoxysilane treated gate insulator
Excellent carrier mobility of 0.24cm2/Vs in regioregular poly(3-hexylthiophene) based field-effect transistor by employing octadecyltrimethoxysilane treated gate insulator
High-performance short channel organic transistors using densely aligned carbon nanotube array electrodes

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

Explore AIP’s new open-access journal
• Article-level metrics now available
• Join the conversation! Rate & comment on articles

Submit Now
Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

H. T. Nicolai,1,a) A. J. Hof,1 M. Lu,1 P. W. M. Blom,1,2 R. J. de Vries,3,4,5 and R. Coehoorn3,5
1Molecular Electronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
2TNO/Holst Centre, High Tech Campus 31, 5605 KN Eindhoven, The Netherlands
3Department of Applied Physics, Molecular Materials and Nanosystems Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
4Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
5Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands

(Received 20 June 2011; accepted 3 November 2011; published online 18 November 2011; publisher error corrected 16 December 2011)

The charge transport in a polysiropibifluorene derivative with copolymerized N,N,N’,N’-tetraaryldiamino biphenyl (TAD) hole transport units is investigated as a function of the TAD content. For TAD concentrations larger than 5%, guest-to-guest transport is observed. It is demonstrated that in this regime the charge carrier density dependent mobility can be described consistently with the extended Gaussian disorder model, with a density of hopping sites which is proportional to the TAD concentration and comparable to the molecular density. © 2011 American Institute of Physics. [doi:10.1063/1.3663563]

Since their discovery, organic semiconductors have been investigated intensively and they are today finding their way into applications such as displays and lighting. A prerequisite for full-color applications is an efficient blue emitter. Polyfluorenes (PF) form an attractive class of blue emitters due to their wide band gap and high photoluminescence efficiency.1,2 They are commonly used as blue emitter in systems containing TAD as the hole transporting unit.2,15 Hole mobilities up to $3 \times 10^{-7} \text{m}^2/\text{Vs}$ have been measured in fluorene-triarylamine copolymers.6 Furthermore, the hole transport can be tuned by varying the arylamine content, under the condition that their HOMO energy is higher than that of the host polymer.17 At low concentrations the amine units act then as hole traps and reduce the hole current, whereas above a critical concentration, typically $\sim 3\%$, percolation can take place between the amine units and the hole transport will become governed by guest-to-guest hopping, leading to an increase of the mobility with increasing amine concentration.19 The EGDM transport parameters are then expected to be related to the guest DOS. For sufficiently dilute systems, one might envisage that σ is independent of the amine concentration and that N_i is equal to, or at least proportional to, the guest density. However, such relationships have so far not been established experimentally. We have studied the guest density dependence of σ and N_i for systems containing TAD as the hole transporting unit.

The TAD hole transport unit studied here is functionalized with two tert-butyl groups. Its structure is depicted in the

[a)Author to whom correspondence should be addressed. Electronic mail: H.T.Nicolai@rug.nl.
inset of Fig. 1(a). The structure of the complete copolymer is published elsewhere. The HOMO levels of PSF and the TAD unit have been estimated at −5.6 eV and −5.4 eV, respectively. The TAD concentration was varied from 5 to 12.5 mol. %, enabling a systematic study of the influence of the TAD concentration on the guest-to-guest hole transport. Hole-only devices were fabricated by first spin-coating a layer of PEDOT:PSS on a glass substrate with a patterned indium tin oxide layer. The PSF-TAD copolymer layers were subsequently spin-coated from a toluene solution in a nitrogen environment. Hole-only devices with a PSF-TAD layer thickness equal to (approximately) 80, 120, 200, and 280 nm were studied. The top contacts were evaporated through a shadow mask at a base pressure of approximately 10^{-6} mbar and consisted of a 20 nm layer of palladium capped with an 80 nm gold layer. The high work function of palladium ensures that there is no electron injection into the LUMO level of the polymer and that the device current is determined by the hole transport. No electroluminescence was observed, which confirms the absence of electron injection.

Fig. 1(a) shows the room temperature current-density–voltage (J–V) characteristics of devices with an active layer thickness of ~ 200 nm and a TAD concentration of 5% and 7.5%, and Fig. 1(b) shows the current density as a function of the TAD concentration measured at 10 V. As a reference, also the results for the PSF host polymer are given (0% TAD concentration). As in an earlier study for a similar type of copolymer, the inclusion of 5% TAD lowers the hole current by approximately one order of magnitude compared to the hole current in the pure polyspirobifluorene polymer. No data are available for TAD concentrations below 5%. Therefore, it cannot firmly be established whether at 5% the TAD units act still as traps for the hole transport through the polyspirobifluorene. However for TAD concentrations of 7.5% and above, the hole transport increases with increasing TAD concentration, demonstrating the occurrence of guest-to-guest hopping for these concentrations. A simplified analysis of the J(V) curves, using the well-known Mott-Gurney (MG) equation which neglects diffusion and which assumes a constant mobility, gives rise to an effective mobility of approximately 8×10^{-11} m2/Vs for the pure (0%) reference polymer, in reasonable agreement with the result of earlier time-of-flight measurements on a similar copolymer.

In that study the mobility could be increased beyond the host mobility by the inclusion of 50% TAD. To take the effects of disorder on the carrier density dependence and field dependence of the mobility and the diffusion coefficient as described within the EGDM into account, the numerical drift-diffusion model developed in Ref. 25 has been used. We have analyzed the voltage, temperature, and layer thickness dependence of the current density to obtain the parameters describing the mobility function in the guest-to-guest hopping regime (TAD concentration >5%). The polymer with 5% TAD is included, although it is not a priori clear whether the transport is then already well within this regime. The PEDOT:PSS contact is assumed to be Ohmic. In the following, V_{bi} is the built-in voltage, $\mu_r(T)$ is the mobility at temperature T in the limit of zero field and zero carrier density, and k_B is the Boltzmann constant. For each polymer, a least-squares method was first used to fit the dependence on voltage, thickness and temperature to the EGDM equations using a common set of parameters σ and N_r, but allowing $\mu_r(T)$ to be determined by the fitting. Different samples were allowed to have somewhat different temperature-independent values of V_{bi}. The resulting values of $\mu_r(T)$ were then fit to the expression $\mu_r(T)/\mu_r^0 \exp(-C\sigma^2)$, with $\sigma = \sqrt{\sigma/(k_B T)}$, as expected within the EGDM. Using this expression for $\mu_r(T)$, Fig. 2 shows the measured and calculated temperature dependence of the J(V) curves for a 198 nm device with a TAD concentration of 7.5%, with $V_{bi} = 1.6$ V. The inset shows the measured and calculated 1/T^2 dependence of $\mu_r(T)$. For the systems studied, C ranged from -0.42 to -0.47, with an error margin of approximately ±0.04. The values found are close to the value 0.42 given in Ref. 12 or 4/9 in Ref. 9. At room temperature, $\mu_r(T)$ was found to increase approximately 20-fold as the concentration increased from 5% to 12.5%. Assuming constant values of σ (see below) and of C, μ_r would then be expected to show a similar increase. However, in view of the error margin in the C-parameter, the required high-temperature extrapolation could not be made with sufficient accuracy. The values of V_{bi} ranged from 1.45 to 1.75 V for the various samples, perhaps because of variations of the dipole layer formed at the cathode interface. Well above V_{bi}, the shape of the J(V) curves is almost independent of V_{bi}, greatly facilitating the accurate determination of the EGDM parameters.
Fig. 3 shows the optimal values of N_t and σ for each polymer. The error margins indicate the range of values of N_t and σ for which the fit error (defined as the sum of the squares of the logarithmic deviation) is within 3% of the minimum fit error. The width of the Gaussian DOS needed to fit the data is close to $\sigma = 0.15$ eV, essentially independent of the TAD concentration, and consistent with the value obtained earlier for the polymer with 10% TAD.\(^{20}\) For a TAD concentration of 7.5% and above, the TAD concentration dependence of N_t is, taking the error margins into account, well described by the proportionality relation given by the dashed line in Figure 3. For the concentration of 5%, N_t is slightly higher than expected, which might be due to the possibility that at this concentration the charge transport is in an intermediate regime where both the TAD units and the fluorene units contribute to the transport. In this regime, a more complicated model is required.\(^{26}\) We remark that for higher concentrations the quality of the fit was less sensitive to the value of N_t, leading to a large error margin in N_t.

The hopping site density, as roughly estimated by assuming a density of 1 g/cm^3 for the polyspirofluorene copolymer and assuming two transport sites per TAD unit, is equal to $\sim 2 \times 10^{26} \text{ m}^{-3}$ for the 10% copolymer. The value of N_t obtained from the present transport study ($\sim 3.5 \times 10^{26} \text{ m}^{-3}$) is in reasonable agreement with this estimate. This supports the point of view that the parameters as obtained when describing the transport properties within the EGDM are physically meaningful.

In conclusion, we find that the hole transport in the poly-spirofluorene copolymers as studied in the guest-to-guest regime is well-described using the EGDM. The analysis supports the point of view that the parameters obtained, describing the Gaussian DOS, is physically meaningful. First, the site density N_t is found to be proportional to the TAD concentration and reasonably close to the actual molecular site density. Second, the disorder parameter $\sigma (\sim 0.15 \text{ eV})$ is found to be essentially independent of the TAD concentration, as expected for sufficiently dilute systems. The results open the prospect that the EGDM can also provide the appropriate framework for describing the guest concentration dependence of the charge carrier transport in other host-guest systems operating in the guest-to-guest regime, including dye-doped fluorescent and phosphorescent emissive layers in small-molecule based OLEDs at high dye-concentrations.

The authors wish to acknowledge financial support from the European Commission under contracts IST-004607 (OLLA) and FP7-213708 (AEVIOM).