Robust thermal performance of Sr2Si5N8:Eu2+ : an efficient red emitting phosphor for light emitting diode based white lighting

Citation for published version (APA):

DOI:
10.1063/1.3666785

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Oct. 2023
Robust thermal performance of $\text{Sr}_2\text{Si}_5\text{N}_8: \text{Eu}^{2+}$: An efficient red emitting phosphor for light emitting diode based white lighting

Stuart E. Brinkley,1,a) Nathan Pfaff,2 Kristin A. Denault,2 Zhijun Zhang,3 H. T. (Bert) Hintzen,3 Ram Seshadri,1,4 Shuji Nakamura,1,2 and Steven P. DenBaars1,2

1Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106, USA
2Materials Department, University of California, Santa Barbara, California 93106, USA
3Department of Chemical Engineering and Chemistry, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
4Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA

(Received 19 October 2011; accepted 17 November 2011; published online 13 December 2011)

An important component to the advent of solid state lighting technology is the development of inorganic crystalline phosphors for efficient conversion of photons from blue light emitting diodes (LEDs) to other visible wavelengths for greater color rendering and “warmer” white lighting. We present the results of a recently developed rare earth doped nitride-based red emitting phosphor, $\text{Sr}_2\text{Si}_5\text{N}_8: \text{Eu}^{2+}$, combined with GaN-based blue emitting LEDs and YAG:Ce phosphor for improved white light applications. A unique remote phosphor packaging approach was used in all testing to isolate LED performance from phosphor performance. Luminous efficacies were achieved at 94 lm/W with an improved color rendering index (CRI) of 72, mixing red phosphor with YAG:Ce. The $\text{Sr}_2\text{Si}_5\text{N}_8: \text{Eu}^{2+}$ red emitting phosphor was found to have a low temperature sensitivity (only 28% power reduction at 150 °C) and greater luminous performance at low concentrations in the encapsulant by weight relative to other typical red emitting phosphors.

Light emitting diodes (LEDs) are steadily replacing conventional incandescent and fluorescent-based lighting as a standard form of illumination due to the progression of gallium nitride (GaN) based semiconductor technology.1–4 Equally important to the deployment of LED-based white lighting has been the advancement of inorganic phosphors for photon conversion.5 Solid state lighting utilizes highly efficient GaN-based near UV or blue emitting LEDs (BLEDs) in conjunction with green, yellow, and red emitting inorganic phosphors to achieve a fuller color gamut and allow colored objects to be properly rendered as well as to have desirable color temperature.6

With a need for efficient phosphors for blue photon down conversion, phosphors in various material systems have been developed by scientists, chemical engineers, and material scientists.7–9 Concerns that continue to drive development of inorganic phosphors for lighting applications are the desire to reduce the energetic costs of Stokes’ shift and maintain performance under elevated temperature operation. The commercial standard developed for GaN-based lighting has been YAG:Ce owing to its high conversion and luminous efficacy and ability to meet basic spectral needs for white light.5,10

However, BLEDs paired with yellow emitting phosphors suffer the same color rendering and aesthetic deficiencies that were cited in the utilization of fluorescent lighting. To solve this issue, yellow and/or green emitting phosphors are combined with red emitting phosphors to produce a “warmer” white light. Unfortunately, adding additional phosphors results in a reduction of the system efficiency despite the improvement in color rendering capability. Furthermore, common red emitting phosphors, such as sulphide based materials, suffer from chemical instability and strong thermal quenching. Phosphor utility depends on the ability to deliver photon conversion at as low an efficiency and stability cost as possible while still providing photon wavelengths for applications where a large color gamut is required.

We present the results of a nitride-based red emitting phosphor, $\text{Sr}_2\text{Si}_5\text{N}_8: \text{Eu}^{2+}$, to further elaborate on existing data11,12 All testing was performed using commercially available BLEDs (nominally 450 nm) as an excitation source for the red and yellow emitting phosphors considered. The red emitting phosphor was deployed alone as well as mixed with YAG:Ce for measuring color rendering capabilities of a white lighting package.

For the purposes of this study, a unique approach was taken to control for the emission and efficiency properties of the LEDs separately from the phosphors. Often, LEDs are combined with phosphors where the phosphor is placed directly on the LED and then encapsulated in a silicone or epoxy resin. In this direct contact configuration, the LED degrades its own performance through self heating but also negatively impacts the performance of the phosphor. Less frequently, phosphors are deployed in a remote configuration to reduce some of the phosphor heating from the LED and prevent lossy optical processes.13–15 The configuration presented here improves upon these methods in that the packaging for the LED and the phosphor are distinct, separate, and modular.

We use electroplated silver headers as a reflective heat sink and conduction path as well as large area (1 mm²) LEDs and encapsulate both in a silicone hemispherical dome
Measurements were first taken of the Sr$_2$Si$_5$N$_8$:Eu$^{2+}$ phosphor with a BLED at room temperature in the described implementation. The encapsulated LED package was measured to have an EQE of 60%. The approximate energy efficiency of the phosphor when used with a BLED at room temperature in the described implementation was stable at 52%, while the quantum yield was measured at 80% with a 457 nm laser excitation wavelength. This energy efficiency includes the conversion and scattering efficiency of the phosphor (including Stokes' loss) as well as the extraction efficiency of the phosphor cap. This phosphor efficiency is calculated as being, $\eta = P_{\text{phosph}}/(P_{\text{LED}} - P_{\text{LED}} + P_{\text{phosph}})$, where P_{phosph} is the integrated radiometric power of the phosphor emission, and $P_{\text{LED}} + P_{\text{phosph}}$ and P_{LED} are the integrated radiometric powers of the blue photon emission spectra with and without the phosphor cap, respectively.

Typically, phosphor efficiencies are reported in terms of quantum yield. However, the phosphor efficiency calculation described previously gives a more accurate depiction of phosphor performance in conjunction with an LED excitation source. We have observed that phosphors with high values for quantum yield do not necessarily result in high values in the system level efficiency measurement. Furthermore, quantum yield is likely somewhat wavelength and temperature dependent and, given the methodology for obtaining this value, will have only limited utility in predicting phosphor performance in a full solid state lighting implementation.

Figure 2 shows that the phosphor is very stable under normal levels of photon flux as there is negligible saturation of the phosphor, even to high excitation levels. There is also no indication of thermal degradation or photo-bleaching during our monitoring of many measurements spanning several hours at elevated temperatures. We measured a stable full-width-at-half-maximum of approximately 100 nm and the inset of Fig. 2 shows little variation in chromaticity. The small variation in chromaticity is due to blue shifting of the current density was varied from 0.1 A/cm2 to 50 A/cm2. The collected spectra are shown in Fig. 2. The encapsulated LED package was measured to have an EQE of 60%. The approximate energy efficiency of the phosphor when used with a BLED at room temperature in the described implementation was stable at 52%, while the quantum yield was measured at 80% with a 457 nm laser excitation wavelength. This energy efficiency includes the conversion and scattering efficiency of the phosphor (including Stokes' loss) as well as the extraction efficiency of the phosphor cap. This phosphor efficiency is calculated as being, $\eta = P_{\text{phosph}}/(P_{\text{LED}} - P_{\text{LED}} + P_{\text{phosph}})$, where P_{phosph} is the integrated radiometric power of the phosphor emission, and $P_{\text{LED}} + P_{\text{phosph}}$ and P_{LED} are the integrated radiometric powers of the blue photon emission spectra with and without the phosphor cap, respectively.

Typically, phosphor efficiencies are reported in terms of quantum yield. However, the phosphor efficiency calculation described previously gives a more accurate depiction of phosphor performance in conjunction with an LED excitation source. We have observed that phosphors with high values for quantum yield do not necessarily result in high values in the system level efficiency measurement. Furthermore, quantum yield is likely somewhat wavelength and temperature dependent and, given the methodology for obtaining this value, will have only limited utility in predicting phosphor performance in a full solid state lighting implementation.

Figure 2 shows that the phosphor is very stable under normal levels of photon flux as there is negligible saturation of the phosphor, even to high excitation levels. There is also no indication of thermal degradation or photo-bleaching during our monitoring of many measurements spanning several hours at elevated temperatures. We measured a stable full-width-at-half-maximum of approximately 100 nm and the inset of Fig. 2 shows little variation in chromaticity. The small variation in chromaticity is due to blue shifting of the current density was varied from 0.1 A/cm2 to 50 A/cm2. The collected spectra are shown in Fig. 2. The encapsulated LED package was measured to have an EQE of 60%. The approximate energy efficiency of the phosphor when used with a BLED at room temperature in the described implementation was stable at 52%, while the quantum yield was measured at 80% with a 457 nm laser excitation wavelength. This energy efficiency includes the conversion and scattering efficiency of the phosphor (including Stokes' loss) as well as the extraction efficiency of the phosphor cap. This phosphor efficiency is calculated as being, $\eta = P_{\text{phosph}}/(P_{\text{LED}} - P_{\text{LED}} + P_{\text{phosph}})$, where P_{phosph} is the integrated radiometric power of the phosphor emission, and $P_{\text{LED}} + P_{\text{phosph}}$ and P_{LED} are the integrated radiometric powers of the blue photon emission spectra with and without the phosphor cap, respectively.

Typically, phosphor efficiencies are reported in terms of quantum yield. However, the phosphor efficiency calculation described previously gives a more accurate depiction of phosphor performance in conjunction with an LED excitation source. We have observed that phosphors with high values for quantum yield do not necessarily result in high values in the system level efficiency measurement. Furthermore, quantum yield is likely somewhat wavelength and temperature dependent and, given the methodology for obtaining this value, will have only limited utility in predicting phosphor performance in a full solid state lighting implementation.

Temperature-dependent measurements were taken using a hotplate and a large brass enclosure for the LED and phosphor cap to create harsh ambient thermal conditions. Typically, these measurements are performed using thermoelectric stages, but these can often lack sufficient thermal contact to accurately test phosphors in a remote configuration. An optical fiber was used to collect light from the enclosure. A thermocouple was used to measure the temperature of the LED or phosphor cap, while an Ocean Optics 2000+ photodetector was used to collect spectra at 5 °C intervals. The photodetector was calibrated using a known blackbody source for accurate relative wavelength intensities. The LED was operated at a peak EQE current density of 5 A/cm2 for all of the temperature measurements, which ranged from 22 °C to 150 °C.

Measurements were first taken of the Sr$_2$Si$_5$N$_8$:Eu$^{2+}$ phosphor with a BLED to determine the phosphor properties. The cap, made by mixing 1% phosphor of the total phosphor/silicone mixture (by weight), was mounted on the LED and placed in a calibrated integrating sphere where the DC
LED emission with increasing current due to the quantum confined Stark effect.

As can be seen in Fig. 3(a), temperature measurements showed that the Sr$_2$Si$_5$N$_8$:Eu$^{2+}$ phosphor performed very well with only a 28% reduction in intensity (corrected for LED thermal droop) at 150 °C. The room temperature chromaticity coordinates of Fig. 3(a) inset differ from Fig. 2 because a different phosphor concentration was used to prevent saturation of the photodetector by the LED. The shift in chromaticity in Fig. 3(a) is, however, due to thermal effects rather than LED polarization effects. Figure 3(b) shows the impact of heating on performance for the Sr$_2$Si$_5$N$_8$:Eu$^{2+}$ phosphor from room temperature to 150 °C. As expected, the phosphor suffers thermal quenching but with performance comparable to YAG:Ce. This is remarkably good for a red emitting phosphor. The LED shows low thermal droop, comparable to YAG:Ce. This is remarkably good for a red phosphor.

FIG. 3. (Color online) (a) Shows the spectra collected for Sr$_2$Si$_5$N$_8$:Eu$^{2+}$ measured at room temperature and 150 °C. The inset shows the change in chromaticity with temperature. (b) The relative intensity decrease of the Sr$_2$Si$_5$N$_8$:Eu$^{2+}$ phosphor and the LED based on the integrated intensity measured at each temperature compared to room temperature.

This work has been supported by the Solid State Lighting and Energy Center at UCSB. We gratefully acknowledge many useful conversations with Professor Claude Weisbuch. KAD is supported by the ConvEne IGERT Program (NSF-DGE 0801627).