Low transition temperature mixtures (LTTMs) for CO2 capture: suitable alternatives to ionic liquids (ILs)?
Francisco Casal, M.; Zubeir, L.F.; van den Bruinhorst, A.; Peters, C.J.; Kroon, M.C.

Published in:
Proceedings of the 3rd Asian Pacific Conference on Ionic Liquids and Green Processes (APCIL 2012), September 17-19, 2012, Beijing, China

Published: 01/01/2012

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 02. Jan. 2019
Low Transition Temperature Mixtures (LTTMs) for CO₂ capture: suitable alternative to Ionic Liquids (ILs)?

María Francisco a,b,*, Lawien Zubeir a, Adriaan van den Bruijnsinas b, Cor J. Peters b,c, Maaike C. Kroon a.

a Eindhoven University of Technology, Eindhoven, Netherlands, 5612 AZ
b Delft University of Technology, Delft, Netherlands, 2628 CA
c The Petroleum Institute, Abu Dhabi, U.A.E.
*Corresponding author: M.Francisco-Casal@tue.nl

Recently, new approaches were taken towards the use of green solvents. Some examples are the substitution of organic solvents for supercritical fluids,”bio-solvents” or low-vapor-pressure liquids.

Among these possibilities, ionic liquids (ILs) attracted particular attention over the past years. One of their main advantages is that they can be designed by choosing the cation-anion combination to pursue the best performance as solvents for a certain purpose [1]. The so-called “Task Specific Ionic Liquids” provide more suitable physicochemical properties or high degree of control of the solubility of gases in the solvent media. Together with their extremely low volatility, the judicious selection of the constituents contributes to their “green” performance. However, their “green” character is sometimes questioned. The high viscosity, production and purification cost make ILs technology in most of the cases not competitive compared with traditional solvents.

More recently, deep eutectic solvents formed by combination of a quaternary salt and a hydrogen-bond donor showed IL analogue solvent characteristics, with promising advantages. Some of them are low cost preparation, no need of purification, no water incompatibility, tunable phase behavior and solubility, low toxicity and biodegradability [3]. A new family of low transition temperature mixtures (LTTMs) formed by natural molecules keeping the functionalities of some task specific and natural ionic liquids[4] is explored in this work, evaluating their suitability as solvents for CO₂ capture.

References