Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass

Citation for published version (APA):

DOI:
10.1210/jc.2012-2561

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Fractures in Healthy Females Followed from Childhood to Early Adulthood Are Associated with Later Menarcheal Age and with Impaired Bone Microstructure at Peak Bone Mass

T. Chevalley, J. P. Bonjour, B. van Rietbergen, R. Rizzoli, and S. Ferrari

Division of Bone Diseases (T.C., J.P.B., R.R., S.F.), University Hospitals and Faculty of Medicine, CH-1211 Geneva, Switzerland; and Department of Biomedical Engineering (B.v.R.), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Background: Whether fractures observed in healthy children are associated with microstructural alterations and strength deficit that persists by the end of the growth period is not established. Considering the importance of pubertal timing in bone development, we also quantified the fracture risk related to later menarcheal age (MENA).

Participants and Methods: We followed 124 healthy girls from mean ± SD age 7.9 ± 0.5 to 20.4 ± 0.6 yr. Fractures, MENA, and radius areal bone mineral density (aBMD) were recorded at regular intervals. At a mean age of 20.4 yr, microstructural and strength variables of the distal radius were determined by high-resolution peripheral computerized tomography and micro-finite element analysis.

Results: Sixty-one fractures occurred in 42 subjects. At 20.4 yr, subjects with fractures had lower aBMD at radial diaphysis (P = 0.005) and metaphysis (P = 0.008), lower distal radius trabecular volumetric density (vBMD) (P = 0.010) and thickness (P = 0.014), and reduction in stiffness (P = 0.013), failure load (P = 0.013), and apparent modulus (P = 0.046). Odds ratios revealed an increased risk of fracture for a 1-SD reduction in radial aBMD diaphysis [1.97 (P = 0.006)] and metaphysis [1.97 (P = 0.008)] and distal radius trabecular vBMD [1.89 (P = 0.011)], thickness [1.97 (P = 0.017)], stiffness [2.02 (P = 0.014)], failure load [2.00 (P = 0.014)], and apparent modulus [1.79 (P = 0.043)]. MENA occurred at a later age in subjects with fractures (P = 0.003). For MENA 1 SD (1.2 yr) later, the increase of fracture risk was 2.1 (P = 0.002).

Conclusions: In healthy young women, low trabecular vBMD and thickness in the distal radius are associated with reduced bone strength and increased fracture risk during growth. This study also documents that later pubertal timing is associated with increased incidence of fracture during childhood and adolescence. (J Clin Endocrinol Metab 97: 4174–4181, 2012)
Fracture data only recorded from 7.9–16.4 yr in the cohort studied in the following report was previously discussed in relation to bone mineral content gain in the radial metaphysis, as assessed by dual-energy x-ray absorptiometry (DXA) (11). This previous report did not include any microstructure component analysis or strength estimates. It suggested that a deficit in the radius observed in prepuberty and at a mean age of 16.4 yr could not only be related to the incidence of forearm fracture during growth but also may be a marker for lower peak bone mass attainment and thereby be a risk factor for osteoporosis in adulthood (11). Furthermore, this increased risk of fracture during growth could still be influenced by the timing of pubertal maturation, the impact of which on bone acquisition is detectable from 5 yr before menarche until the time of peak bone mass attainment, as previously reported in our cohort of healthy young adult women (12). In this cohort, a 1.9-yr difference in mean menarchal age (MENA) was associated not only with lower radial areal bone mineral density (aBMD) T-score but also with lower total volumetric BMD (vBMD), cortical vBMD, and cortical thickness at the distal radius (13). This set of independent observations raises the ancillary question of whether the incidence rate of fracture would be influenced by the timing of pubertal maturation that appears to be linked to bone mineral mass accumulation and risk of fracture during development (14), as previously documented in a healthy male cohort (15).

In the present report, we tested these two related hypotheses in a prospective longitudinal study in our cohort of healthy female subjects followed from a mean age of 7.9 to 20.4 yr, i.e. until an age there was quantitative evidence the subjects had reached peak bone mass.

Therefore, we analyzed at a mean age of 20.4 yr the distribution of fractures recorded during childhood and adolescence until peak bone mass attainment and studied in addition to DXA measurement whether some of the distal radius microstructure components including porosity and strength estimates as assessed by high-resolution peripheral quantitative computerized tomography (HR-pQCT) and micro-finite element analysis (µFEA), respectively, were related to the risk of fracture during skeletal development. We also examined to what extent pubertal timing, as precisely assessed by prospectively recording MENA, modulated the risk of fracture throughout the period of bone acquisition.

Subjects and Methods

Participants
Fracture history and BMD and cortical and trabecular microstructure as well as bone strength estimates assessed by HR-pQCT and µFEA were studied in a cohort of 124 healthy young adult women at a mean age of 20.4 ± 0.6 (±SD) yr. Influence of age at menarche on forearm microstructure has been previously reported in this cohort (13). These women belonged to a cohort followed for 12 yr and previously examined for the first time at a mean age of 7.9 ± 0.5 yr (16) and then successively at mean age of 8.9 ± 0.5, 9.9 ± 0.5 (16), 12.4 ± 0.5 (17), and 16.4 ± 0.5 yr (18). After enrollment at a mean age of 7.9 ± 0.5 yr, half of the cohort received during 1 yr a supplementation of calcium in a randomized, double-blind, placebo-controlled design as previously reported (16). The ethics committees of the Department of Pediatrics and the Department of Rehabilitation and Geriatrics of the University Hospitals of Geneva approved the protocol, and informed consent was obtained from both parents and children (16). All subjects were recruited within the Geneva area, and exclusion criteria at baseline were weight to height ratio below the third or above the 97th percentile, physical signs of puberty, chronic disease, malabsorption, bone disease, and regular use of medication.

Clinical assessment
Body weight, standing height, and body mass index (kilograms per square meter) were prospectively measured at each visit. During the first two visits at mean age ± SD 7.9 ± 0.5 and 8.9 ± 0.5 yr, pubertal stage was assessed by direct clinical examination made by a pediatrician-endocrinologist. At mean age of 10.0, 12.4, and 16.4 yr, pubertal maturation was assessed by a self-assessment questionnaire with drawings and written description of Tanner’s breast and pubic hair. At the time of the first two visits at a mean age of 7.9 and 8.9 yr, all girls were classified Tanner’s stage P1, whereas at mean age of 10.0 yr, 38% of them had reached Tanner’s stage P2. MENA was then assessed prospectively by direct interview at the second, third, fourth, and fifth visits, i.e. at the mean age of 8.9, 10.0, 12.4, and 16.4 yr. Fracture history since birth, including skeletal site, year of event, and type of intervention, was recorded for the first time at a mean age of 7.9 yr and then at each follow-up visit from the children and their parents.

Calcium and protein intake assessment
Calcium intake was estimated mostly from dairy sources by a frequency questionnaire at each visit from a mean age of 7.9 yr (19). Protein intake was assessed by frequency questionnaire (20) at the mean age of 20.4 yr. The total animal protein intake was expressed either in grams per day or grams per kilogram body weight per day. It included dairy, meat, fish, and egg proteins.

Physical activity assessment
Physical activity in these young adult women was assessed by a questionnaire based on self-reported time spent in physical education classes, organized sports, recreational activity, and usual walking and cycling (21). Subsequently, the collected data were converted and expressed as physical activity energy expenditure (kilocalories per day) using established conversion formulas (22).

Measurement of bone variables
The aBMD was determined by DXA using a Hologic QDR 4500 instrument (Waltham, MA) at the radial metaphysis and diaphysis in anteroposterior view as previously reported (13). The coefficient of variation of repeated measurements at these
sites, as determined in young healthy adults, varied from 1.0–1.6% for BMD. The vBMD and microstructure were determined at the distal radius by HR-pQCT with an XtremeCT instrument (Scanco Medical AG, Bassersdorf, Switzerland) that acquires a stack of 110 parallel computerized tomography slices (9-mm length) with an isotropic voxel size of 82 μm as previously described (13, 23). Unless there was a history of fracture, DXA and HR-pQCT measurements were performed on the nondominant forearm. The following variables were measured: total, cortical, and trabecular vBMD expressed as milligrams hydroxyapatite (HA) per cubic centimeter; trabecular bone volume fraction (percent); trabecular number, thickness, and spacing (micrometers); and mean cortical thickness (micrometers) and cross-sectional area (square millimeters).

The HR-pQCT images were filtered and binarized using the standard manufacturer’s method (24). The peristomial and endostomial boundaries were defined using an automated contouring method similar to the technique described previously by Buie and colleagues (25) as implemented in Image Processing Language (IPL version 5.07; Scanco Medical). The automated segmentation uses two threshold values and a series of morphological operations (e.g., dilation and erosion operations) to extract the endostomial and peristomial surfaces of the cortex and was validated earlier (26, 27).

Cortical porosity (percent) was calculated as the number of void voxels in each binary cortex image divided by the total number of voxels (27). The in vivo short-term reproducibility of HR-pQCT at the distal radius assessed in 15 subjects with repositioning varied from 0.6–1.0% and from 2.8–4.9% for bone density and for trabecular structure, respectively. These reproducibility ranges are similar to those previously published (28). One technician per device performed all the scans as well as daily quality control phantom to check for possible drifts in the x-ray sources.

Finite element analysis

The finite element model of the radius was created directly from the segmented HR-pQCT images using a procedure similar to that used in earlier clinical studies (29–31). In summary, a voxel-conversion procedure was used to convert each voxel of bone tissue into an equally sized brick element (32), thus creating μFE models that can represent the actual trabecular architecture in detail. The models contained approximately 2 million elements for the radius and could be solved in approximately 3 h. Material properties isotropic and elastic were chosen. Both cortical and trabecular bone elements were assigned a Young’s modulus of 10 and a Poisson’s ratio of 0.3 (30, 33). A compression test was simulated to represent loading conditions during a fall from standing height (34). Bone failure load was calculated as the force for which 2% of the bone tissue would be loaded beyond 0.7% strain (33, 35). In addition to failure load (Newtons), μFEA-derived variables used in our study also included stiffness kilo-Newtons per millimeter). All μFE analyses were done using the FE solver integrated in the IPL software version 1.15 (Scanco Medical).

Expression of the results and statistical analysis

The various anthropometric and osteodensitometric variables are given as mean ± SD. The T-score based on the value used in the clinical unit dedicated to the diagnosis of osteoporosis at the University Hospital of Geneva (13, 36) was used to assess whether the cohort mean value with a 95% confidence interval (CI) of radial aBMD could be considered at peak bone mass. The differences in density, microstructure, mechanical parameters, and clinical characteristics among participants with or without a positive history of fracture were assessed by unpaired Student’s t test or by Wilcoxon signed rank test whenever the variable was not normally distributed. Pearson’s correlation coefficients R were calculated for the relationships between cortical porosity and cortical vBMD and thickness. For the differences in density, microstructure, and mechanical parameters between fracture and nonfracture subjects, an analysis of covariance was used to control the influence of age, height, weight, MENA, calcium and protein intake, physical activity, and calcium supplement or placebos. Associations between density, microstructure, mechanical parameters, and fracture status were evaluated by logistic regression analysis with adjustment for age, height, weight, MENA, calcium and protein intake, physical activity, and calcium supplement or placebo randomization between the mean age of 7.9 and 8.9 yr. Associations between density, microstructure, mechanical parameters, and fracture status were evaluated by logistic regression analysis with adjustment for age, height, weight, MENA, calcium and protein intake, physical activity, and calcium supplement or placebo randomization between the mean age of 7.9 and 8.9 yr and expressed as odds ratio (OR) with 95% CI per SD decrease. The significance level for two-sided P values was 0.05 for all tests. The data were analyzed using STATA software version 9.2. (StataCorp LP, College Station, TX).

Results

Characteristics of the cohort

Anthropometric data and dietary intake (calcium and proteins) as well as physical activity did not differ between the group with fracture (FX) (n= 42) and the group without fracture (NO-FX) (n= 82) (Table 1). The proportion

| TABLE 1. Characteristics of healthy young adult women according to their fracture history |
|---------------------|---------------------|---------------------|
| | All (n= 124) | NO-FX (n= 82) | FX (n= 42) |
| Age (yr) | 20.4 ± 0.6 | 20.39 ± 0.58 | 20.42 ± 0.63 |
| MENA (yr) | 13.0 ± 1.2 | 12.78 ± 1.19 | 13.45 ± 1.11 |
| Height (cm) | 165.0 ± 6.0 | 165.0 ± 6.1 | 164.8 ± 6.5 |
| Weight (kg) | 60.0 ± 9.2 | 59.2 ± 8.3 | 61.4 ± 10.8 |
| Body mass index | 22.1 ± 3.4 | 21.8 ± 2.9 | 22.7 ± 4.1 |
| Calcium intake (mg/d)| 832 ± 380 | 807 ± 374 | 879 ± 390 |
| Protein intake (g/d)| 41.6 ± 16.7 | 40.3 ± 16.7 | 44.0 ± 16.7 |
| Protein intake (g/kg BW · d)| 0.71 ± 0.31 | 0.69 ± 0.32 | 0.74 ± 0.30 |
| Physical activity (kcal/d) | 352 ± 298 | 347 ± 246 | 362 ± 384 |
| Calcium supplement (n/placebo (n)) | 65/59 | 46/36 | 19/23 |

Values are means ± SD as determined by the end of the follow-up study, i.e. at the last study visit. BW. Body weight.

a P = 0.003 as compared with young adult women without fracture.

b Calcium or placebo randomization between mean age of 7.9 and 8.9 yr.
of subjects having received calcium-fortified vs. nonfortified foods (placebo) between mean age of 7.9 and 8.9 yr was slightly but not significantly higher in the NO-FX (56.1%) than in the FX (45.2%) group. The only significant difference between the FX and NO-FX groups was the mean age of menarche (MENA) (13.45 ± 1.11 vs. 12.78 ± 1.19 yr, \(P = 0.003; \) range 10.2–16.4 yr) (Table 1). The FX group experienced their first menstruation about 8 months later than the NO-FX group.

Fracture characteristics

Sixty-one fractures occurred in 42 of the 124 subjects. More than one fracture (two to four) was recorded in 14 girls, accounting for 34 fractures and 56% (34 of 61) of all fractures. Most fractures were localized in forearm and wrist (41%), followed by hand/fingers (13%) and arm/shoulder (7%), whereas 26% occurred at the lower limb (including, foot, ankle, tibia, and femur) and 13% at other sites. In girls having experienced more than one fracture, the upper limb was always involved. Peak fracture incidence occurred from 9–12 yr with 44.3% (27 of 61) of all fractures being recorded during this age range (Fig. 1).

Bone variables

DXA-measured aBMD

When examined at a mean age of 20.4 yr, the mean radius aBMD T-score (95% CI) of the cohort were \(0.16 (0.06 \text{ to } 0.24) \) and \(0.27 (0.10 \text{ to } 0.46) \) at the radial metaphysis and diaphysis, respectively (13, 36), attesting that the cohort could be considered at peak bone mass based on the reference value used in the clinical unit dedicated to the diagnosis of osteoporosis at the University Hospital of Geneva (13, 36).

At 20.4 yr of age, the mean aBMD at both the radial metaphysis and diaphysis sites were significantly lower in the FX than in the NO-FX group (Table 2). These differences remained statistically significant after adjustment for several potentially confounding variables including, age, MENA, standing height, body weight, calcium and protein intake, physical activity, and calcium or placebo randomization in an intervention trial that took place between mean age of 7.9 and 8.9 yr (Table 2). After exclusion of eight subjects with a finger or a toe fracture, mean

![FIG. 1. Age range distribution of fractures and cumulative number of subjects with first fracture during growth in 124 girls.](image)

TABLE 2. Areal BMD, microstructure, and strength estimates of distal radius in 124 young adult women according to their fracture history

<table>
<thead>
<tr>
<th></th>
<th>NO-FX (n = 82)</th>
<th>FX (n = 42)</th>
<th>(P^a)</th>
<th>(P^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aBMD (mg/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial metaphysis</td>
<td>461 ± 52</td>
<td>436 ± 46</td>
<td>0.011</td>
<td>0.008</td>
</tr>
<tr>
<td>Radial diaphysis</td>
<td>719 ± 48</td>
<td>692 ± 50</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>vBMD (mg HA/cm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>337 ± 54</td>
<td>311 ± 58</td>
<td>0.015</td>
<td>0.032</td>
</tr>
<tr>
<td>Cortical</td>
<td>892 ± 45</td>
<td>878 ± 52</td>
<td>0.134</td>
<td>0.342</td>
</tr>
<tr>
<td>Trabecular</td>
<td>167 ± 35</td>
<td>151 ± 26</td>
<td>0.022</td>
<td>0.010</td>
</tr>
<tr>
<td>BV/TV (%)</td>
<td>14.0 ± 2.9</td>
<td>12.6 ± 2.1</td>
<td>0.021</td>
<td>0.009</td>
</tr>
<tr>
<td>Tb.N (mm⁻¹)</td>
<td>2.00 ± 0.26</td>
<td>1.95 ± 0.23</td>
<td>0.324</td>
<td>0.232</td>
</tr>
<tr>
<td>Tb.Th (µm)</td>
<td>69.5 ± 10.0</td>
<td>64.5 ± 8.7</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Tb.Sp (µm)</td>
<td>438 ± 68</td>
<td>454 ± 61</td>
<td>0.209</td>
<td>0.140</td>
</tr>
<tr>
<td>Tb.Sp s.d. (µm)</td>
<td>176 ± 38</td>
<td>187 ± 41</td>
<td>0.140</td>
<td>0.133</td>
</tr>
<tr>
<td>Ct.Th (µm)</td>
<td>827 ± 168</td>
<td>768 ± 189</td>
<td>0.081</td>
<td>0.128</td>
</tr>
<tr>
<td>CSA (mm²)</td>
<td>260 ± 44</td>
<td>265 ± 48</td>
<td>0.562</td>
<td>0.937</td>
</tr>
<tr>
<td>Stiffness (kN/mm)</td>
<td>82.8 ± 15.9</td>
<td>75.0 ± 14.3</td>
<td>0.023</td>
<td>0.013</td>
</tr>
<tr>
<td>Estimated failure load (N)</td>
<td>3956 ± 735</td>
<td>3610 ± 651</td>
<td>0.028</td>
<td>0.013</td>
</tr>
<tr>
<td>Apparent modulus</td>
<td>2056 ± 400</td>
<td>1793 ± 486</td>
<td>0.006</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Values are means ± s.d. BV/TV, trabecular bone volume fraction; CSA, cross-sectional area; Ct.Th, cortical thickness; Tb.N, trabecular number; Tb.Sp, trabecular spacing; Tb.Th, trabecular thickness.

\(a \) \(P \) values between FX and NO-FX groups, without adjustment.

\(b \) \(P \) values between FX and NO-FX groups, after adjustment for age, MENA, height, weight, calcium and protein intakes, physical activity and calcium or placebo randomization between mean age of 7.9 and 8.9 yr.
aBMD at both the radial metaphysis and diaphysis sites remained significantly lower in the FX compared with the NO-FX group. Among the FX group, mean radial aBMD values at both radial metaphysis and diaphysis sites were very similar in women with a history of more than one fracture (two to four).

HR-pQCT-measured microstructure

The FX group, compared with the NO-FX group, displayed significantly lower total vBMD (−7.7%), trabecular bone density or trabecular bone volume fraction (−9.6 or −10.0%), and trabecular thickness (−7.2%) before and after adjustment for potential confounding factors indicated above (Table 2) as well as after exclusion of eight subjects with a finger or a toe fracture. No difference in these variables was observed in the FX group between subjects having experienced one and more than one fracture. After controlling for radial metaphysis or diaphysis aBMD, no structural parameters remained significantly different between the FX group and the NO-FX group.

µFE estimates of strength

The estimates of strength, i.e., stiffness (−9.2%, $P = 0.026$), failure load (−8.6%, $P = 0.028$), and apparent modulus (−11.7%, $P = 0.006$), differed between the two groups, with lower values in the FX group before and after adjustment for potential confounders (Table 2) as well as after exclusion of eight subjects with a finger or a toe fracture. The cortical polar moment of inertia of the distal radius was lower by 3.1% ($P = 0.047$) in the FX (4045 ± 943 mm4) compared with the NO-FX group (4171 ± 1010 mm4).

aBMD, microstructure, and strength OR

As evaluated by logistic regression and expressed in terms of OR (95% CI), the risk of fracture was significantly increased for 1 SD reduction in aBMD at both the radial metaphysis and diaphysis sites (Fig. 2). The risk of fracture was also significantly higher for a decrease in the total vBMD of the distal radius (Fig. 2). Reduction in both cancellous vBMD and trabecular thickness contributed to this increased risk. The OR for radial cortical vBMD and thickness were above 1.0, but the CI overlapped unity (Fig. 2). The risk of fracture was higher with reduction in the three estimates of radial bone strength, i.e., stiffness, failure load, and apparent modulus (Fig. 2). At the mean age of 7.9 yr, aBMD at the radial metaphysis adjusted for age, weight, and height was predictive of fractures recorded until the mean age of 20.4 yr [OR (95% CI) = 1.58 (1.01–2.51); $P = 0.048$].

MENA and OR

In complement to the difference in MENA between the two groups presented in Table 1, the risk of fracture was significantly higher for 1 SD increase in the age at which the first menstruation was experienced (Fig. 2).

Cortical porosity

The cortical surface identifiable as pores was extremely limited, and no difference was found between the FX (0.40 ± 0.18%) and the NO-FX (0.40 ± 0.22%) group. Likewise, no significant difference was found between the two groups for the mean size of cortical pores (FX group 134 ± 11 vs. 134 ± 8 μm). The cortical porosity was inversely related to the cortical vBMD ($R^2 = 0.169$; $P < 0.001$) and thickness ($R^2 = 0.044$; $P = 0.050$). The slope of the regression between cortical density (x-axis, in milligrams HA per cubic centimeter) and porosity (y-axis, in percent) was not different (data not shown) between the FX group (R = −0.52; $P < 0.001$) and the NO-FX group (R = −0.40; $P < 0.001$).

Discussion

This study confirms the high prevalence of fractures during growth in healthy children and adolescents (1–5). Compared with the prevalence recorded in a male cohort living in the same community, the prevalence of girls with fractures re-
corded in this study until the age of 20.4 yr was lower (34%) than in boys (49%), despite the fact that in males the data were collected not beyond the age of 15.2 yr (6). In accordance with other reports (4, 5, 37), our study describes similar fracture rates in girls and confirms that distal forearm is the most affected skeletal site. Also consistent with several studies (1–5, 37) the highest incidence was recorded in the 9- to 12-yr range, i.e. in our cohort, at an age preceding by 0.5–4.5 yr the mean of MENA (13.45 yr).

An additional longitudinal recording of this healthy female cohort from 16.4 to 20.4 yr did not modify our previous results (11) documenting that the highest incidence of fracture was observed during the age range including the acceleration-deceleration in standing height gain (Fig. 1). This timing coincides with the transient delay in bone mineral accumulation when compared with the growth in standing height (2, 7, 38, 39). Sexual maturation assessment of this cohort by direct medical examination (40) indicated that the asynchrony between bone mineral mass accumulation and longitudinal growth was maximal at midpuberty (7), corresponding to the P2–P3 pubertal stage classification (41).

In our cohort, the normal range of MENA expanded from 10.2–16.4 yr, thus in conformity with other related reviews in healthy subjects (42, 43). Later pubertal maturation in girls was associated with about a 2-fold increased risk of experiencing fracture from early childhood to the onset of the third decade when peak bone mass was attained. This significant elevation in fracture risk by a factor of 2.1 was associated with reduced radial metaphysis and diaphysis aBMD.

We previously reported that, once peak bone mass was attained in this cohort, a significant inverse relationship was found between later MENA and lower radial aBMD at both diaphysis and metaphysis levels (13). The aBMD deficit was associated with reduced total and cortical vBMD of the distal radius and diminished cortical thickness without a decrease in the cross-sectional area that we interpreted as less endocortical accrual without compensatory increase in periosteal apposition (13). These structural and densitometric characteristics, which are consistent with those reported by Ackerman et al. (44), may explain the MENA-related risk of fractures presented in this report.

The differences in aBMD at both radial diaphysis and metaphysis levels between the FX and the NO-FX groups presented in Table 2 were close to the differences previously reported (13) between the groups experiencing later (14.0 yr) or earlier (12.1 yr) menarche. Interestingly enough, the differences of 7.7% in the total vBMD of the distal radius as assessed by HR-pQCT were identical when comparing either the later with the earlier MENA groups (13) or the FX with the NO-FX groups (Table 2). Reduction of similar magnitude was also observed in cortical vBMD and thickness of the distal radius in relation with the presence or absence of fracture and in relation with later compared with earlier MENA as previously reported (13). However, the differences between the FX and the NO-FX groups in the cortical vBMD and thickness did not reach the level of statistical significance. Although not significant, these deficits may have contributed to the lower estimates of the strength variables in the FX group compared with the NO-FX group. The μFEA applied in the present study identified the deficits in the trabecular components of the distal radius as predominantly implicated in the risk of fracture. Calculation of OR suggested that reduction in both trabecular vBMD and thickness would be associated with a 2-fold increased risk of fracture. The magnitude of the fracture risk computed for these two trabecular variables was similar to that calculated for the corresponding differences in both radial diaphysis and metaphysis aBMD. These associations of both trabecular vBMD and strength estimates at the distal radius with an increased risk of fracture were more pronounced than those observed at the distal tibia in our cohort of healthy boys with fractures recorded until 15.2 yr of age (1–6).

From the HR-pQCT microstructure images determined at 20.4 yr of age, the μFE estimates of biomechanical properties were obtained by a compression test of the distal radius in the longitudinal direction that simulated loading due to a fall from standing height on the outstretched hand (34). This approach indicated a deficit in stiffness, corresponding to a 2-fold increase in fracture risk. Similar significant deficits and increased fracture risk were observed by modeling the failure load estimate, which was shown to be highly correlated with the stiffness of the distal radius using μFEA in the boundary conditions of loading simulation model used in this study. The apparent modulus that adjusts stiffness to the cross-sectional area variable was slightly less predictive of the fracture risk than stiffness or failure load when separately considered, but remains statistically significant.

Regarding porosity in the radial cortex, the very low cortical surface detected by the manufacture algorithm as pores was not different in the FX and NO-FX groups. This observation does not mean that during pubertal maturation, when the incidence of fracture was maximal, the degree of porosity would not have been greater in the FX than in the NO-FX groups, as suggested from a previous study on radial structure during adolescent growth (10). In this study, the percentage of porosity was as low as in the present report (about 0.4%) in healthy postpubertal subjects. However, it significantly increased during the midpuberty period (10).
Strengths and weaknesses of the study

The prospective follow-up of fracture incidence from childhood to young adult age in healthy females can be considered as a valuable aspect of our study. Likewise, this study at peak bone mass identified a deficit in distal radius variables, providing, beyond aBMD information, microstructural and biomechanical insights at the most frequently fractured skeletal site. Another contribution of this prospective study is the clear-cut identification of MENA as a risk factor for incidental fractures during skeletal development. Thus, our study corroborates the notion (11) that fractures occurring during childhood and adolescence could be markers of relatively low peak BMD associated with microarchitectural deficits that would persist during adult life and thereby increase the risk of osteoporosis.

There are limitations to this study that should be mentioned. Our study does not directly address the microstructural and mechanical resistance deficit that may be associated with the transient fragility of midpuberty when the maximal incidence of fracture is recorded. Therefore, the relation between cortical and trabecular structure and fracture incidence at the time of peak height velocity remains to be established. When microstructure and biomechanical variables are assessed, like in our current study following peak bone mass attainment, the modality of the loading test used to assess bone resistance in vitro by μFEA might not necessarily pertain to the most usual impact conditions resulting in forearm fractures of children and adolescents. Finally, our biomechanical analysis did not assess possible differences in the material property of the radial cortex between the FX and the NO-FX groups. This material variable, as potentially determined by adding another technical approach such as microindentation in different planes (45–47), might improve the discrimination between mechanically defective and robust bony structures in relation to the occurrence of fracture in healthy children and adolescents.

In conclusion, healthy young adult women who sustained at least one fracture during childhood and adolescence, compared with those who did not experience any fracture, had lower aBMD at the radial diaphysis and metaphysis. At the distal radius, they exhibited lower trabecular vBMD and thickness, and reduced bone strength variables, as assessed by estimating stiffness, failure load, and apparent modulus. By the end of bone development, we did not detect more extended cortical porosity in the fracture group. This study also shows that later age of menarche is associated with increased incidence of fracture during childhood and adolescence.

Acknowledgments

We thank Giulio Conicella and the team of the Division of Nuclear Medicine for DXA and HR-pQCT measurements; Fanny Merminod, certified dietician, for the assessment of food intakes and her assistance in managing the study; Pierre Casez, M.D., for the elaboration of the database; and François Herrmann, M.D., M.P.H., for help with statistical analysis. We are indebted to Professor Dominique Belli, M.D., chairman of the Department of Pediatrics at the Geneva University Hospitals, for his support in this research project.

Address all correspondence and requests for reprints to: Thierry Chevalley, M.D., Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland. E-mail: Thierry.Chevalley@hcuge.ch.

The Swiss National Science Foundation supported this study (Grant 324B0-109799).

Disclosure Summary: B.v.R. is a consultant for Scanco Medical.

References

27. Nishiyama KK, Macdonald HM, Buic HR, Hanley DA, Boyd SK 2010 Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal abMD: an in vivo HR-pQCT study. J Bone Miner Res 25:882–890
45. Dall’Ara E, Schmidt R, Skakkebaek NE, Toppari J, Bourguignon JP 2012 Microindentation can discriminate between damaged and intact human bone tissue. Bone 50:925–929