A tunable transconductor for analog amplification and filtering based on double-gate organic TFTs
Raiteri, D.; Torricelli, F.; Cantatore, E.; van Roermund, A.H.M.

Published in:
Proceedings of the 37th European Solid-State Circuits Conference (ESSCIRC ’11), 12-16 September 2011, Helsinki, Finland

DOI:
10.1109/ESSCIRC.2011.6044995

Published: 01/01/2011

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A Tunable Transconductor for Analog Amplification and Filtering based on Double-gate Organic TFTs

D. Raiteri, F. Torricelli, E. Cantatore, A.H.M. van Roermund
Eindhoven University of Technology, Department of Electrical Engineering, MSM
Eindhoven, The Netherlands - Email: d.raiteri@tue.nl

Abstract—This paper presents a transconductor designed using a physical model of double-gate p-type organic thin film transistors (OTFTs). A control voltage can be used to vary the output resistance and the transconductance over one order of magnitude. The voltage gain does not depend on process parameters and therefore is insensitive to shelf and operational degradation. This circuit can be used as a tunable resistor, in voltage amplifiers or in \(G_m C \) filters.

I. INTRODUCTION

The interest in electronics manufactured with organic semiconductors (i.e. “organic electronics”) has been constantly growing in the last twenty years. This technology has made a lot of progress both from the performance and the reliability point of view, enabling the design of increasingly more complex organic circuits. Digital circuits, like RFID transponders [1] and microprocessors [2] have been demonstrated. Recently the first comparators, digital-to-analog [3], [4] and analog-to-digital converters [5], [6] have been shown, but more effort must be spent on analog circuit design. Indeed different kinds of organic sensors have already been reported [7] and the lack of a proper frontend and analog signal conditioning is the last hurdle to the realization of fully-integrated smart sensors with organic technologies.

In this paper is presented the design of a linear transconductor suitable for the implementation of voltage amplifiers and \(G_m C \) active filters. A novel physical model is used to describe the organic thin-film transistor (OTFT) behavior.

II. DUAL GATE ORGANIC TFTS AND THEIR MODEL

The organic transistors used in this paper are p-type pentacene TFTs with bottom gate structure fabricated using a commercial technology [8] and a new physical model of the OTFT was adopted for this design.

The current conduction in organic TFTs is typically modelled using the concept of variable range hopping (VRH) [9]. According to this theory, in organic semiconductors free carriers jump between localized energy states, therefore the density of states (DOS) defines the electrical properties of the material. In this technology the DOS is well approximated as the sum of two exponential functions [10], [11]: one is valid for the deep states (low energy) and one for the tail states (high energy)\(^1\). In the rest of the paper subscripts “d” and “t” will refer respectively to these two kinds of states.

The channel current \(I_c \) can be found combining the deep and tail currents [10], given by

\[
I_{d,t} = \beta_{d,t} (V_G - V_S - V_{T})^{\gamma_{d,t}} \quad \text{and} \quad \beta_{d,t} = \beta_{d,t}(V_G - V_D - V_{T})^{\gamma_{d,t}}, \quad (1)
\]

\(^1\)For the sake of simplicity all transistor equations will be written for n-type transistors, even if the technology provides only p-type devices.

According to the equation [11]:

\[
I_c = \frac{I_d I_t}{I_d + I_t}. \quad (2)
\]

The prefactor \(\beta \) in (1) depends on both geometric and physical parameters of the transistor and the exponent \(\gamma \), always larger than two, takes into account the superlinear variation of the mobility with the concentration of charge carriers (and thus \(V_G \)). The total transistor current can finally be calculated as

\[
I_{DS} = I_c I_s, \quad (3)
\]

where the factor \(I_s \) takes account of the channel length modulation and reads:

\[
I_s = 1 + \left(\frac{V_{DS}}{V_{Early}} \right)^{\frac{1}{\gamma_{t}}}. \quad (4)
\]

\(I_s \) models the channel modulation due to the space charge limited (SCL) transport in the depletion region [13]. The value of \(V_{Early} \) depends on the transistor length, and has been suitably characterized from measurements. In order to keep the continuity of the model the factor \(I_s \) multiplies also the linear current, but its effect in the linear region is negligible due to the low \(V_{DS} \).

Given the “shunt combination” of currents in (2), only the smallest among deep and tail current is relevant for the total channel current: hence for hand calculations the smallest among the currents (1) can be considered alone.

The OTFTs used in this work have a second gate controlling the back side of the channel. This “top” gate has the property to influence the transistor threshold, inducing a capacitive division of the bias voltage applied to the bottom gate (\(V_G \)) [12]. The effect of the top gate (inset of Fig. 1) on the threshold voltage \(V_T \) can be modelled as:

\[
V_T = V_{FB} - k (V_{TG} - V_S). \quad (5)
\]

In this equation \(V_{TG} \) is the voltage applied to the top gate, while the flat band voltage \(V_{FB} \) is an intrinsic property of the bottom gate stack, and \(k \) is a constant depending on the coupling of the top gate with the channel [8]. It is worth noticing that in our p-type transistors \(V_T \) is positive for zero top gate bias, hence the devices are conductive already for \(V_{GS} = 0 \). Figure 1 shows the measured and the modelled transfer characteristics of a transistor obtained varying the top gate bias (here it is evident the threshold shifting effect of \(V_{TG} \)). Figure 2 plots transfer and output characteristic of a transistor, measured and modelled for \(V_{TG} = 0 \).
III. DESIGN OF THE TRANSCONDUCTOR

The design of a transconductor begins with the choice of the actual transconductive element. The technology used, like almost every other organic one, does not provide linear resistors, hence the choice is limited between the linear and saturation regions of the OTFT. In this case linearity was preferred over transconductance, and thus the output resistance of the transistor M_2 (see schematic in Fig. 3) was used to create the transconductance. The transistor M_2 acts as source follower and applies the input voltage on M_2. The voltage drop on M_2 sets the current that the current mirror (M_3 and M_4) transfer to the output branch. M_3 simply cascodes the output. In case of an ideal source follower and current mirror the transconductance of the circuit would be:

$$G_m = 1/r_{02}$$

Unfortunately the actual transconductance always happens to be smaller, especially due to few peculiarities of current mirrors in unipolar organic technologies.

A. Current Mirror

Transistors M_3 and M_4 mirror the current from the input branch to the output one. Although really simple, this basic current mirror gains additional interest due to the different physics of the technology underneath. Our transistors have positive threshold voltage, hence the sink device M_3 is always operating in the linear region and M_4 works in saturation only for high source-drain voltages. In our circuit M_2 limits the voltage drop on M_1 which, therefore, is always biased in the ohmic region too. Because of their bias point, it is not possible to obtain together the same transfer function for both the bias and the small-signal currents.

Indeed, being M_3 and M_4 in ohmic region, their current is strongly dependent on V_{DS}, and this voltage changes in a different way for the two devices. If we apply (1) to the current mirror, it can be shown that the small signal current gain $T = g_{m,44}/g_{m,34}$ is always smaller than one. The transconductances $g_{m,44}$ and $g_{m,34}$ can be written respectively as:

$$g_{m,44} = \beta \gamma d \left(V_{GS} - V_{FB} \right)^{\gamma - 1} - \left(V_{GD} - V_{FB} \right)^{\gamma - 1}$$
$$g_{m,34} = \beta \gamma d \left(V_{GS} - V_{FB} \right)^{\gamma - 1}$$

and T can be calculated to be:

$$T = 1 - \left(\frac{V_G - V_D - V_{FB}}{V_G - V_S - V_{FB}} \right)^{\gamma - 1},$$

where V_G and V_S are the DC gate and source voltage of both M_3 and M_4, while V_D is the DC drain voltage of M_4. T is less than 1 even when $V_D = V_G$ and the bias currents are identical. This is possible because a small variation of V_{GS3} corresponds to a change in V_{DS3} and they both contribute to the variation of I_{SD3}. In the case of M_4, V_{DS4} does not need to change with V_{GS4}, thus the derivative of I_{SD4} is in general different from the one of I_{SD3}.

B. Transconductive Device and Source Follower

The dimensions of M_2 play the most important role in the final transconductance, but an unsuitable choice of M_1 and M_3 can also negatively affect the performance of the final circuit. This happens when the variations of the voltage on M_3 and of the control voltage of M_1 are not negligible. Too small devices M_1 and M_3 will cause V_{GS1} and V_{GS3} to be large, decreasing the linearity and drastically reducing the input range. On the other hand, too wide M_1 would result in a waste of area, while a wide M_1 would cause a decrease of the input range. Indeed, for low inputs, the source of M_1 would saturate to ground due to the positive threshold voltage. Hence the linear part of the characteristic would not start for $V_{in} = 0 \text{V}$, but for $V_{in} > V_{GS1}(I_{MAX})$. According to these considerations the final design adopts the same dimensions for all the devices of the input branch.

A slightly higher transconductance of the source follower is advantageous in the transconductor, therefore the top gate of M_1 is also driven by the input voltage. It is easily derived combining (1) and (5) that in this configuration the transconductance of the input device increases by a factor $(1 + k)$.

As explained in the subsection III.A, the devices M_3 and M_4 operate in their linear region. For this reason the output resistance is really low and the output branch needs to be cascaded. This task is carried out by M_5. It is worth noticing that the presence of M_5 does not increase the output resistance up to around $g_{m,5}r_0$, because the source degeneration is weak and the resulting gain of the local negative feedback is low. For this reason the output resistance of the transconductor is, at first order, equal to the output resistance of M_5. This consideration
let us immediately infer the small signal voltage gain of the circuit (when the output is loaded with a current source - a condition that will be referred to as “unloaded”). Both the transconductance and the output resistance are determined by the r_0 of the two OTFTs M_2 and M_3, hence the unloaded voltage gain reads:

$$ G = T \left(\frac{r_{02}}{r_{01}} \right). $$

(9)

C. Output Resistance and Gain

In order to increase the voltage gain, it is possible to change the dimensions of M_3 to decrease the channel length modulation. Table I summarizes the results of different simulations where the W and L of M_3 have been scaled up by the same factor S. The values of V_{Earyl} for different channel lengths have been measured. As expected the output resistance R_{out} rises and so does the gain G. This scaling however does not produce a proportional increase in the gain, in fact the output resistance of M_3 affects the bias point of M_4 and causes a drop of T and consequently of G_m.

IV. MEASURED AND SIMULATED RESULTS

The transconductor was realized in the PolymerVision technology and both the transconductance and the output resistance of the transconductor have been evaluated. The circuit was operated at $V_{DD} = 20V$ and different measurements have been taken for different values of the control voltage V_{bias} with a step for the independent variable of $100mV$.

The output resistance is shown in Fig. 5 as a function of the output voltage. This plot was derived from the output current measured applying a constant voltage $V_{in} = 5V$ and sweeping V_{out} from ground to V_{DD}. The measured and simulated output currents are shown in the inset. While increasing the control voltage V_{bias}, the output current drops and the resistance rises. The maximum output current goes from $4.098\mu A$ for $V_{bias} = 0V$ to $337.3nA$ for $V_{bias} = 20V$.

The transconductance was derived from the output current (Fig. 4) obtained sweeping the input voltage from ground to V_{DD}. For this measure the output was biased with a voltage source at $V_{out} = 5V$. The resulting transconductance as a function of the input voltage V_{in} is shown in Fig. 6. The current and the transconductance decrease with V_{bias}. Varying the control voltage from ground to V_{DD}, G_m goes from $18.67nA/V$ to $2.16nA/V$. From Fig. 6 the influence of V_{bias} on the linearity of the circuit can also be evaluated. The higher
the control voltage, the larger is the linear input range or, with
the same input range, a higher linearity is achieved.

The sets of data in Fig. 4, 5 and 6 (summarized in Table II
for \(V_{in} = 5V\) and \(V_{out} = 5V\)) also confirm what stated
the section III.1C. The unloaded gain of the circuit is indeed
almost independent on the bias voltage (and on \(V_T\)), while
it depends on the difference between the output resistance of
the devices \(M_2\) and \(M_5\). The two devices have here same
\(W/L\) ratio and channel length, hence the gain is about one.
The actual gain value is slightly higher than 1 because the
output resistance of the mirror, i.e. of \(M_2\), increases the
output resistance of the transconductor compared to the \(R_{out}
\) of \(M_5\). This effect more than compensates the reduction
in transconductance \(G_{m}\) due to the actual transfer factor \(T\) and
to the source follower.

Connecting together input and output nodes, a tunable
resistor connected to \(V_{DD}\) is obtained. The measured current
of such configuration is shown in Fig. 7 for different values
of the control voltage \(V_{bias}\).

The last figure (Fig. 8) shows the simulated Bode magnitude
plot of the transconductor in a \(G_m C\) filter configuration (see
the schematic in the inset). The capacitance of the filter has
a value of \(C = 100pF\) and the load \(M_6\) is \(0V_{gs}\) connected
to embody a current source. The loss of gain due to the finite
output resistance of \(M_6\) is not present when \(M_6\) is subtituted
with an ideal current source. Future work will focus on
the realization of a feedback system to match the DC currents
of transconductor and load. In this way it would be possible
to move the cut-off frequency changing \(V_{bias}\), and thus \(G_m\),
without influencing the gain.

Table II

Measurement Summary

<table>
<thead>
<tr>
<th>(V_{bias}) [V]</th>
<th>(R_{out}) [MΩ]</th>
<th>(G_m) [nA/V]</th>
<th>(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>51</td>
<td>1.37</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>32</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>18</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>153</td>
<td>9.5</td>
<td>1.45</td>
</tr>
<tr>
<td>20</td>
<td>342</td>
<td>4.7</td>
<td>1.6</td>
</tr>
</tbody>
</table>

![Fig. 7](image1.png)

![Fig. 8](image2.png)

Fig. 7. Current flowing out of the transconductor, with \(V_{in}\) connected to \(V_{out}\), as a function of the input voltage for different values of \(V_{bias}\) = 0V, 5V, 10V, 15V. The continuous line represents the measured data, the stippled line the simulated ones.

Fig. 8. Bode magnitude plot of the circuit in the inset (continuous line). The stippled line represents the transfer function using an ideal current source in place of \(M_6\).

V. Conclusion

Adopting a physical model of OTFTs a transconductor
suitable for analog signal conditioning was designed in a unipolar
double gate technology. Simulations approximate well the
measurement and demonstrate what analytically derived. The
unloaded voltage gain mainly depends on a channel length
ratio and is weakly sensitive to most process parameters, e.g.
the threshold voltage, and hence to their time variation due to
aging.

Acknowledgment

The authors would like to acknowledge the support of Kris
Myny (IMEC) for making the masks and of Polymer Vision
for the fabrication of the circuits. This research is supported by
the Dutch Technology Foundation STW, which is the applied
science division of NWO, and the Technology Programme of
the Ministry of Economic Affairs.

References

1. E. Cantatore et al., “A 13.56-MHz RFID system based on organic
transponders,” Solid-State Circuit, IEEE Journal of, vol. 42, no. 1, pp. 84-
92, Jan. 2007.
3. T. Zaks et al., “A 3.3V 6b 100ks/s Current-Steering D/A Converter Using
Organic Thin-Film Transistors on Glass,” IEEE ISJCC Dig. of Tech. Papers,
2011, pp. 324-325.
4. W. Xiong et al., “A 3-V, 6-Bit C-2C Digital-to-Analog Converter Using
Complementary Organic Thin-Film Transistors on Glass,” Solid-State Circuit,
5. H. Marien et al., “A Fully Integrated \(\Delta\Delta\) ADC in Organic Thin-Film
Transistor Technology on Flexible Plastic Foil,” Solid-State Circuit, IEEE
complementary organic thin-film transistors on glass,” IEEE ISJCC Dig. of
7. R. P. Singh et al., “Biosensors developments based on potential target
May 2009.
Let., vol. 87, 2005
10. F. Torricelli et al., “Accurate Modeling of Organic Thin Film Transistors
for Analogue Circuit Simulations.” Proc. of SAFE 2010 - Veldhoven, The
Range: Theory, Experimental Validation and Application to OTFT Mod-
12. M. Spijkman et al., “Increasing the noise margin in organic circuits using

418