A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

Published in:
Proceedings of the E-MRS 2012 Spring meeting, symposium M : more than Moore : novel materials approaches for functionalised silicon based microelectronics, 14-18 May 2012, Strasbourg, France

DOI:
10.1088/1757-899X/41/1/012001

Published: 01/01/2012

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1757-899X/41/1/012001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 131.155.151.137
The article was downloaded on 29/01/2013 at 10:59

Please note that terms and conditions apply.
A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

F. Roozeboom1,2*, B. Kniknie1, A.M. Lankhorst1, G. Winands1, R. Knaapen1, M. Smets1, P. Poodt1, G. Dingemans2, W. Keuning2 and W.M.M. Kessels2
1TNO, PO Box 6235, 5600 HE Eindhoven, The Netherlands
2Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: f.roozeboom@tue.nl; fred.roozeboom@tno.nl

Abstract. Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing ‘curtains’ of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

Introduction

3D through-silicon vias (TSVs) date back to two patents in the 1960s [1, 2], cf. Fig. 1. Yet, it is only now with the continuous on-chip scaling reaching the point where Moore’s Law (essentially an economic law) approaches its limits that TSV technology receives increasing interest for 3D integration [3]. Other drivers next to cost reduction are the reduced form factor and the increased performance of TSV-connected stacked-die devices, such as reduced RC delay and low power consumption. TSV technology is also accelerating the rapidly growing market of microelectromechanical systems (MEMS) by enabling the interconnection of multifunctional chips stacked in a heterogeneously 3D-integrated System-in-Package (i.e. the so-called ‘More than Moore’ domain). Today, the industrial technology of choice for etching both TSV and MEMS structures in silicon is Deep Reactive Ion Etching (DRIE).

Figure 1. TSV structures proposed in Shockley’s patent [1].
Spatially divided Deep Reactive Ion Etching: a new concept

The conventional technology of choice for silicon DRIE etching is the room temperature Bosch process [4, 5] illustrated in Fig. 2a. This process consists of two alternating half-cycles: 1) etching with SF$_6$ plasma, and 2) passivation of the sidewalls and bottom of the etched features with a protecting -(C$_2$F$_4$)$_n$- fluorocarbon, PTFE-like) polymer liner deposited from C$_4$F$_8$ plasma.

Figure 2. a) Conventional Bosch etch process scheme with temporal switching of consecutive etch and passivation half-cycles. The horizontal bar in grey represents a pre-patterned hard mask; (b) alternative spatial process modes with C$_4$F$_8$ passivation; (c) alternative with spatial ALD SiO$_2$ passivation of a wafer which moves horizontally back and forth under spatially divided reaction zones. Blue arrows pointing upwards indicate exhaust lines. Notice the difference in height of the gas bearing compartments (down to ~20 μm) and the plasma compartments (order ~mm); not to scale.

The first half-cycle is an ion-assisted isotropic etch step with SF$_6$ plasma. It would proceed - if non-interrupted - mainly by the non-directional F-containing radicals to form volatile SiF$_x$ products that are pumped off. In order to minimize the lateral etching component the etch steps are quickly interrupted by C$_4$F$_8$ passivation steps. During each etch step a bias voltage is applied to the substrate holder. This causes a directional physical ion bombardment from the plasma onto the substrate which sputters the polymer off the feature’s bottom part, thus leaving the sidewall passivation intact, and enabling the anisotropic etching.

The etch and passivation cycle times are each typically 1-10 s with 0.1-1 μm etched per cycle. The process enables plasma etching of deep vertical microstructures (aspect ratios AR ≥ 20:1) in silicon with etch rates of typically 3-5 μm/min, and selectivities up to ~200:1 against a hard oxide mask (usually SiO$_2$) [6].

An accelerated etch alternative is to convert the above process from its temporal (i.e. time-separated) into the spatially separated regime [7]. The spatial separation can be accomplished by inert gas (e.g. N$_2$) bearing ‘curtains’ of heights down to ~20 μm, or even smaller (Fig. 2b). These curtains confine the reactive gases to individual (often linear) injection zones constructed in a gas injector head. By horizontally moving the substrate back and forth under the multiple injector head one can create the alternate exposures needed to complete the overall cycle. The optimum pressure in each injection slot is obtained by balancing the various gas flows which are injected into and exhausted from the slots, and by a proper design of the distance between the various slots and the gas bearing gap height (a smaller gap causes a larger pressure field gradient between the various channels).

The passivation step in spatial DRIE: ALD-based, low-pressure or atmospheric

The selected mask material generally affects etch rate, undercutting, and surface quality of etched features [8]. Oxidic ALD-deposited hard masks like Al$_2$O$_3$ are reported to have lower pinhole density and thus superior etch selectivity than conventionally deposited etch hard masks [9, 10]. Thus a further improvement in the spatial approach can be expected from the replacement of the CVD-based C$_4$F$_8$ passivation steps by ALD-
based deposition cycles of SiO₂, or other oxides (e.g. Al₂O₃). Unlike the C₄F₈ case the ALD-based passivation layer is self-limiting and chemisorptive of nature, and less complex in its layer thickness control. This will lead to improved control of the anisotropy and sidewall smoothness in the total DRIE process.

The idea of using temporal ALD passivation in DRIE of high aspect ratio nanosize features was conceived recently [11], yet without any experimental data given. Experimental evidence was reported by Dingemans et al. [12]. They published a time-efficient plasma-assisted process for low-temperature (50-400 °C) temporal ALD of SiO₂ using H₂Si[N(C₂H₅)₂]₂ precursor known as SAM.24, and O₂-plasma. Precursor dosing times as short as ~50 ms were sufficient to obtain a high conformality (95 ± 5 %) over high aspect ratio (30:1) trenches, as illustrated in Fig. 3a. This indicates that the recombination of O-radicals in such trenches plays no dominant role as was also discussed recently by Knoops et al. [13].

Figure 3. SEM images of deep silicon trenches lined with ALD oxide layers: a) a plasma ALD SiO₂ layer deposited at low-pressure in trenches with aspect ratio ~30 during 830 cycles on top of an ALD Al₂O₃ /thermal SiO₂ layer stack inside. Note, that the wavy appearance of the full trench is due a sample cleaving artefact; (after ref. [12] © Electrochemical Society 2012); b) an ALD Al₂O₃ layer deposited at 1 atm. in 138:1 aspect ratio trenches during 600 cycles in a rotary ALD reactor (trenched wafers kindly provided by Fraunhofer CNT/Namlab, Dresden). Note: in an actual DRIE application the passivation would require only a few ALD cycles (i.e. monolayers of SiO₂ or Al₂O₃).

We found that a non-plasma atmospheric spatial ALD alternative for oxidic passivation is also possible. Figure 3b shows such an Al₂O₃ layer deposited from trimethyl aluminum and water vapor during 600 repeated cycles of 13.5 ms each in the rotary atmospheric ALD reactor described earlier [14]. The layer has good step conformality (≥ 80 %) in trenches with ultrahigh aspect ratios exceeding 130:1. Atmospheric ALD of Al₂O₃ has already successfully been commercialized for the solar cell industry in equipment that deposits films almost two orders of magnitude faster than in conventional (temporal) ALD [15]. This opens up the way to the development of ultrafast atmospheric passivation in DRIE, which would not only simplify and accelerate etching, but also reduce costs (sub-second passivation cycles with, for example, Al₂O₃ depositing at 1.2 nm/s).

Spatial DRIE Reactor Design

The basics of a full spatial DRIE process scheme are illustrated in Fig. 2c. Figure 4 gives an impression of the basics in spatial reactor gas inlet design: a wafer is moving under a (plasma) injector head with inlets for etch gas (SF₆/O₂), bearing gas (N₂) and passivation gas (conventional C₄F₈ or ALD oxide). The pressures pₑ, pᵃ and pᵖ are assumed for the etch, passivation and purge zones, respectively, and the corresponding flow rates φₑ, φᵃ and φᵖ, lengths Lₑ and Lᵃ and heights Hₑ, Hᵃ and Hₑ of the injection zones are listed in Fig. 4. H is a convenient design parameter to obtain the desired pressures. The pressure drop over each channel is proportional to the cube of its compartment height (Δp~H³), and linear in L and φ. Depending on the pressures needed for the spatial DRIE process one can calculate the different dimensions of the bearings. A typical example for low-pressure DRIE is shown in Figure 4, indicating these dimensions to be in the mm to sub-mm range. Note, that the pressure for passivation, pᵖ, is taken to be one order of magnitude higher than the pressure pₑ for etching.
Thus the energy of the fluorine ions from the etching plasma will be higher than that for any ions attracted from the passivation plasma (more collisional losses for F-ions in case of C₄F₈ passivation or oxygen ions in case of oxide ALD passivation). Therefore, in an entirely spatial process with continuous voltage biasing of the full substrate, the ion bombardment of the passivation layer will be sustained during the etch half-cycle.

Timescale Analysis for Convection, Diffusion, Deposition and Mass Supply

In order to further optimize the spatial SF₆/O₂ etch and SiO₂ deposition process parameters preliminary gas transport simulations were performed to analyze all relevant timescales involved. The simulation program used is a general purpose CFD model CVD-X developed to predict and optimize deposition processes in the semiconductor industry [16]. In this program specific models for the description of rarefied gas transport inside trenches have been incorporated. Using these models, transient multi-scale simulations have been performed of flow, precursor transport and deposition reactions in ALD-type reactors filled with high aspect ratio trenches.

A short synopsis of the most relevant formulas involved is given in Table 1. For more details on the simulation program one is referred to ref. 16. The simulations were done for the passivation of a wide range of lateral feature scales. The three main categories of features studied are a) microsystem cavities with 50 μm openings and aspect ratio 5:1, b) 1 μm wide 3D-vias (aspect ratio 10:1, areal density 100/mm²) and c) submicron (0.15 μm) trenches (aspect ratio 10:1, areal density 10⁴/mm²); see Table 2.

Figure 5 shows some of the main simulations results. For a typical conventional DRIE reactor with ~30 liters volume and process parameter (flow rates, pressure, temperature) settings of ref. 12 the relevant process time is dominated by the flushing timescale, which is of the order of seconds (6.12 sec for 90 % volume flushed; 12.25 sec for 99 % volume flushed). The calculated optimum saturation time (transition point from the Langmuir-dominated regime to the supply-dominated regime) at 50 °C is around 20-50 ms, as shown in Figure 5a. This corresponds very well with the experimentally determined Si-precursor dosing times for saturation [12].

The results in miniaturized reaction zones of 2.5 mm height and 5 mm length (in both directions), representative for our spatial reactor dimensions, indicate an optimal pressure range from ~0.5 Torr for flat structures (Fig. 5a) to ~5 torr for TSVs (Fig. 5b) and microsystems (Fig. 5c), at ~100 °C, and 5 - 200 ms timescales depending on the feature’s aspect ratio; see Figs. 5b-d.

It is evident that for lower temperatures and higher aspect ratio features the timescales increase (more Langmuir-dominated). Yet, the corresponding timescales for depositing a few passivation monolayers remain typically in the sub-second regime, even at room temperature, i.e. the targeted process temperature for DRIE in the spatial regime.

Considering the mass supply needed to etch bulk silicon (specific density of 5·10²² atoms/cm³) it will be obvious that the Si-etching half-cycle requires prolonged time intervals. This requirement is the main driving force for the development of high-density plasmas in Si-etching.
Table 1. Formulas used for the timescale analysis of convection, diffusion, deposition and mass supply in the different 3D feature cases, listed in Table 2. (a = aspect ratio; A = area). More details in ref. [16].

\[
\begin{align*}
\text{Eq. 1. Convection, flushing reactor volume} & \quad \tau_{\text{supply, gas}} = \frac{P_{\text{tot}} \cdot M_{\text{precursor}} \cdot C_{\text{reactor}}}{R} \\
\text{Eq. 2. Reactor diffusion} & \quad \tau_{\text{diff, reactor}} = \frac{H^2_{\text{reactor}}}{D} \\
\text{Eq. 3. Trench diffusion} & \quad \tau_{\text{diff, trench}} = \frac{D_{\text{trench}}}{D_{\text{gas}}} \\
\text{Eq. 4. Langmuir deposition flat} & \quad \tau_{\text{Langmuir, flat}} = \frac{n_{\text{tot}} \cdot R \cdot T}{C_{\text{gas}} \cdot f_{\text{gas}} \cdot C_{\text{pre}} \cdot P_{\text{precursor}}} \\
\text{Eq. 5. Langmuir deposition trenches} & \quad \tau_{\text{Langmuir, trench}} = \tau_{\text{Langmuir, flat}} \left(\frac{3}{2} a^2 + \frac{19}{4} a + 1 \right) \\
\text{Eq. 6. Required mass saturating flat} & \quad \tau_{\text{supply, flat}} = \frac{A_{\text{flat}} \cdot d_{\text{layer}, \text{flat}} \cdot \rho_{\text{solid}}}{C_{\text{gas}} \cdot (M_{\text{solid}} / M_{\text{precursor}}) \cdot C_{\text{pre}}} \\
\text{Eq. 7. Required mass saturating trenches} & \quad \tau_{\text{supply, trench}} = \frac{A_{\text{trench}} \cdot d_{\text{layer}, \text{trench}} \cdot \rho_{\text{solid}}}{C_{\text{gas}} \cdot (M_{\text{solid}} / M_{\text{precursor}}) \cdot C_{\text{pre}}}
\end{align*}
\]

Table 2. Dimensions and densities of three characteristic 3D-features used in the timescale analysis of convection, diffusion, deposition and mass supply in spatial DRIE: microsystem cavities with 50 μm openings and aspect ratio 5:1; 1 μm wide 3D-vias (aspect ratio 10:1, areal density 100/mm²) and sub-micron (0.15 μm, DRAM-like) trenches (aspect ratio 10:1, areal density 10⁴/mm²). Flat wafers are used as a reference.

<table>
<thead>
<tr>
<th>Feature characteristic</th>
<th>Flat wafer</th>
<th>μ-systems & Sensors/actuators</th>
<th>TSVs</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>MEMS cavities</td>
<td>TSV</td>
<td>trench (pore)</td>
<td></td>
</tr>
<tr>
<td>Diameter/width (μm)</td>
<td>0</td>
<td>50</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>Depth (μm)</td>
<td>0</td>
<td>250</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>-</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Density (number/mm²)</td>
<td>0</td>
<td>10</td>
<td>10⁰</td>
<td>10⁴</td>
</tr>
<tr>
<td>Exposed area (%)</td>
<td>0</td>
<td>2</td>
<td>0.008</td>
<td>0.02</td>
</tr>
<tr>
<td>Area multiplier</td>
<td>1.0</td>
<td>1.39</td>
<td>1.003</td>
<td>1.007</td>
</tr>
</tbody>
</table>

Microplasma sources

The dimensions of the DRIE reactor design described above, call for the use of miniaturized plasma sources or arrays. In view of the accelerated etch rate requirements a logical further step is to make the etch cycle proceed at higher pressure, ideally at atmospheric pressure, or at least sub-atmospheric, e.g. 100 mTorr. At higher pressures one can expect higher electron densities (nₑ), and correspondingly higher ion and radical formation [17]. Power densities achieved in microdischarges (kW.cm⁻³ to MW.cm⁻³) are orders of magnitude larger than those in conventional large-scale systems (W.cm⁻³) [18].

Today, high-density plasma sources are now being designed and explored by the use of microplasma sources or arrays. Generally, this research aims at achieving a ~hundred-fold increase in electron density [19], significantly beyond the traditional densities of 10¹² cm⁻³, thus enabling high-speed etching at correspondingly higher pressures. The challenge is to avoid increased ion scattering, so that the energy and directionality of the ion bombardment is maintained to combine increased etch rates with good anisotropy control in 3D Si etching. Figure 6 shows the potential gain in plasma density (nₑ) upon miniaturization of ultrahigh-frequency plasma sources in combination with the use photo-stimulation by UV light sources.

The new concept of ALD passivation for RIE in an all-spatial regime can also be combined with microplasma sources replacing the traditional plasma sources.
As a first step we have designed a Dielectric Barrier Discharge microplasma source with a rectangular (0.5 mm wide x 5 mm long) opening for the reactant gas, which is now being tested and optimized for its etching behavior at close distances from an RF-biased substrate (≤ 2 cm). The etching is done in combination with passivation by C₄F₈ CVD and by ALD-based oxide (Al₂O₃). Preliminary results obtained are not yet optimized: the maximum Si-etch rate achieved so far was 4 μm/min at only 35 W plasma source power, 10 V substrate bias, 1.2 mbar, 50 sccm SF₆ and 2 cm distance between the microplasma source and the Si-sample. We are confident that further optimization (higher powers and concentrations, shorter distances of ≤ 0.5 cm, SiO₂ ALD passivation, and light stimulation) will give the necessary improvement.

Concluding remarks and outlook
We have described a novel alternative and disruptive concept of Deep Reactive Ion Etching, which converts the conventional time-divided process into the spatially-divided regime. The spatial separation is realized by inert gas bearing ‘curtains’ of heights above the wafers down to ~20 μm. These curtains confine the reactant gases to individual (e.g. linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can expose the wafer to the alternate gases in the overall cycle without the intermittent reactor volume refreshment time delay that occurs upon every cycle.
Spatially-divided Deep Reactive Ion Etching has the potential of yielding unprecedented etch rates in 3D Si etching and becoming a future high-speed alternative for the conventional Bosch process in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and other applications.

An additional advantage of the spatial DRIE regime is the significant reduction of passivation that settles on (and flakes from) the reactor walls since in this regime no etch or passivation products deposit. Moreover, fluorine-free, thus environmentally friendlier passivation chemicals can be used. When, in addition, the etch process is applied with ALD-based SiO2 passivation rather than with CVD-based C4F8-based half-cycles, the anisotropy control can be simplified, and yield e.g. reduced scallops and mask undercut.

Finally, we note that the concept of spatial etching can also be applied in other demanding application fields such as (plasma enhanced) ALE, i.e. Atomic Layer Etching for nanoscale MOSFET devices requiring etching with atomic layer resolution [20,21] and supreme sidewall passivation to suppress line edge roughness. This technology, based on cycles similarly composed of etch/purge/passivation/purge is not commercially viable yet, but can certainly be optimized in the spatially divided regime.

Acknowledgement
The authors wish to thank S. Riedel, M. Mildner, J. Sundqvist (Fraunhofer CNT, Dresden) and E. Erben (Namlab, Dresden) for providing the ultradependent trenches wafers that we used for ALD deposition (Fig. 3b). Prof. D.C. Schram (Eindhoven University of Technology) is acknowledged for in-depth discussions on microplasma source design.

References