Modeling the mechanics of tissue-engineered human heart valve leaflets
Driessen, N.J.B.; Driessen - Mol, A.; Bouten, C.V.C.; Baaijens, F.P.T.

Published: 01/01/2005

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 29. Nov. 2018
Modeling the mechanics of human tissue-engineered heart valve leaflets

N.J.B. Driessen, A. Mol, C.V.C. Bouten and F.P.T. Baaijens
Eindhoven University of Technology, Department of Biomedical Engineering

Introduction
Computational models provide valuable information to assess the mechanics of tissue-engineered (TE) constructs. In this study, a structurally based model for collagenous cardiovascular tissues [1] is applied to evaluate the mechanical behavior of TE heart valve leaflets [2]. A recently published model for arterial wall mechanics [3] is extended with a fiber volume fraction [4] to describe the relative amount of fibers present in each direction. In this way, structural information with respect to the tissue's fiber architecture can be incorporated.

Materials and methods
The tissues are modeled as incompressible fiber reinforced materials and the extra stress \(\tau \) is written as:

\[
\tau = \hat{\tau} + \sum_{i=1}^{N} \phi_i \psi_f \bar{e}_i \cdot \hat{\tau} \cdot \bar{e}_i
\]

with \(\hat{\tau} \) the (isotropic) matrix stress, \(\phi_f \) the fiber content, \(\psi_f \) the fiber stress, and \(\bar{e}_i \) the fiber direction [1]. The in-plane angular fiber distribution is described by a Gaussian function:

\[
\phi_i (\gamma_i) = A \exp \left(-\frac{(\gamma_i - \mu)^2}{2\sigma^2} \right)
\]

with \(A \) a scaling factor and \(\mu \) the mean value and \(\sigma \) the standard deviation of the fiber distribution. \(\gamma_i \) denotes the in-plane angle of the fibers, where \(\gamma_i = 0^\circ \) corresponds to the circumferential direction and, consequently, \(\gamma_i = 90^\circ \) coincides with the radial direction of the leaflets. The fiber direction in the undeformed configuration is written as:

\[
\bar{e}_{i0}(\gamma_i) = \cos(\gamma_i) \bar{v}_1 + \sin(\gamma_i) \bar{v}_2
\]

with \(\bar{v}_1 \) and \(\bar{v}_2 \) the circumferential and radial direction, respectively.

The model parameters of the TE leaflets are estimated by fitting the model to the averaged results of uniaxial tensile tests in the circumferential and radial direction [Fig. 1]. A pressure of 12 kPa is applied to the leaflets to study their mechanical response. The balance equations are solved using the finite element (FE) method and the FE mesh is shown in Fig. 2.

Results
The simulated distributions of the major principal stretches and stresses in the TE heart valve leaflets after pressure application are shown in Fig. 3. Compared to native leaflets, the response of the TE leaflet is (a) less nonlinear, (b) less anisotropic, (c) stiffer, and (d) there is less coaptation due to the absence of large radial strains [5].

Discussion
- The constitutive model fits the experimental data very well.
- The presented computational framework enables us to estimate the required pressure levels in a bioreactor system to obtain the desired amount of strains in TE leaflets.
- The method offers possibilities to investigate the interrelation between mechanical conditioning and tissue remodeling [6].

References: