A new adaptive MPC system

Citation for published version (APA):

Document status and date:
Published: 01/01/2011

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023
A New Adaptive MPC System

Yucai Zhu*

Faculty of Electrical Engineering, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

*Now at: Department of Control Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China (y.zhu@taijicontrol.com)

1. INTRODUCTION

In the last two decades, model predictive control (MPC) technology has been widely applied in the refining and petrochemical industry. Dynamic models play a central role in the MPC technology. The most difficult and time consuming work during an industrial MPC project is modelling and identification (Richalet, 1993, Zhu, 1998). Besides model identification, understanding MPC control theory and tuning methods and control performance is not an easy task. Due to these technical and manpower difficulties, MPC applications in other (non-petrochemical) process industries are very limited. The MPC technology still cannot be used by non control experts. In MPC applications, it is greatly desired to reduce the technical difficulties and the cost of manpower. Another issue of the current industrial MPC technology is that its performance in disturbance reduction is low.

We will develop a new adaptive MPC control system that, for a given MPC design, can perform controller commissioning and maintenance automatically. Also a method of improving MPC control performance and robustness is proposed.

2. THE ARCHITECTURE OF THE ADAPTIVE MPC

At present, a common MPC project approach has following steps:

1) MPC controller design and benefit analysis.
2) Pre-test.
3) Identification test and model identification.
4) MPC controller tuning and simulation.
5) MPC controller commissioning.
6) MPC controller maintenance. The main task of maintenance is to re-identify the process model.

Highly skilled control engineers with many years of experience are needed to perform the tasks and each step cost considerable time and effort. Different software packages are used in different steps, which is not convenient for the user.

In Zhu et. al. (2008) we have developed an adaptive MPC controller. The adaptive MPC controller can automatically and efficiently perform MPC implementation and maintenance, that is, steps 2) to 6) mentioned above. The adaptive MPC controller consists of three modules: 1) an MPC Control Module, 2) an online Identification Module and 3) a control performance Monitoring Module. Figure 1 shows the block diagram of the adaptive MPC controller.

Adaptive MPC here means automatic MPC implementation and automatic maintenance. It does not mean the sample-wise adaptation of process model as in traditional adaptive control schemes. Assume that an MPC controller design is given. During the MPC implementation, the Identification Module performs automated plant test and automatic model identification. During the plant test, when some identified models have good quality for control according to model validation, they will be used in the MPC Control Module and the corresponding manipulated variables (MV) and controlled variables (CV) will be turned on. As the test continues, more and more models will be loaded in the MPC Control Module and MVs and CVs turned on. When all expected models become good and used in the MPC Control Module, the Identification Module will stop and the MPC commissioning is finished. For an online MPC controller, the Monitor Module continuously monitors its performance. When the Monitor Module detects considerable control performance and model quality degradation, it will activate the Identification Module and plant test and model identification will start while the MPC controller is still on. During the test and identification, poor models will be gradually replaced with the new and good ones. When all the poor models are replaced, the identification module will stop and the MPC maintenance is finished.

The adaptive MPC performs plant test, model identification, control simulation and control commissioning in a parallel manner and, therefore, it can considerably reduce the cost MPC deployment. Most of the time plant tests are performed in closed-loop. Hence disturbance to process operation is reduced. Almost all steps in MPC commissioning and maintenance are done automatically and it can be used by
non control experts such as operators. Hence the cost of manpower is reduced. The improvement in MPC efficiency can be shown as follows.

1) **The Old Way**: Series steps, 3 to 4 software packages

<table>
<thead>
<tr>
<th>Pre-test</th>
<th>Step test & model ID</th>
<th>Simulation</th>
<th>Commission</th>
</tr>
</thead>
</table>

2) **With New Identification**: Series steps, 3 to 4 packages

<table>
<thead>
<tr>
<th>Test & model ID</th>
<th>Simulation</th>
<th>Commission</th>
</tr>
</thead>
</table>

3) **The Integrated MPC**: Parallel procedure, 1 package

<table>
<thead>
<tr>
<th>Test & model ID</th>
<th>Simulation</th>
<th>Commission</th>
</tr>
</thead>
</table>

A prototype of the adaptive MPC controller has been developed which contains two modules: Control Module and Identification Module. It has been applied successfully to a PTA unit in a semi-automatic manner; see Zhu et al. (2008). The development of the Monitor Module is on the way.

3. AN ADAPTIVE DISTURBANCE MODEL FOR MPC

Here a technique for improving the performance and robustness of the MPC Control Module is discussed. In industrial MPC applications for continuous process units working at stationary operating points, we have observed that the process dynamics from inputs to outputs do not change for a long period of time; but the character of unmeasured disturbances change frequently. Unmeasured disturbances are caused by variations in feed composition, in weather conditions, and in steam pressure. These variations cannot be modeled as stationary stochastic processes. In Xu et al. (2010) we have developed an MPC technique that uses a fixed process model and an adaptive disturbance model. The process model is identified using externally excited input-output data. The unmeasured disturbances at the outputs are modeled as a time varying process filtered by an integrated white noise sequence; a time series ARMA model is used to describe the dynamics of the disturbances.

![Figure 2. Schematic of the proposed MPC controller](image)

![Figure 3. Step responses of the crude unit process](image)
4. CONCLUSION AND DISCUSSION

Current generation of industrial MPC technology has two main disadvantages: 1) it is very costly to implement and to maintain an MPC system; 2) the performance in disturbance reduction is low. To solve these two problems, an adaptive MPC technology is introduced. It consists of three modules, a Control Module, an Identification Module and a Monitor Module. It can perform various steps of an MPC project automatically and in a parallel manner. Thus, the efficiency of MPC commissioning and maintenance can be increased by a factor of 3 or more. In the MPC Control Module, an adaptive disturbance model is used to improve control performance and robustness. A prototype of the adaptive MPC system has been applied successfully to a PTA unit. Due to its simplicity and user friendliness, this technology may change the way MPC is applied and can make MPC feasible for all process industries, not just the refining/petrochemical industry. Recent tests have shown that the adaptive disturbance model can increase control performance considerably.

A traditional adaptive MPC controller performs sample-wise identification and adaptation of both process models and disturbance models without monitoring the test condition and model quality. The new adaptive MPC system is very different from the traditional adaptive control: the process model is adapted on demand (when activated by the Monitor Module) where test signals are used in model identification; the disturbance model is adapted sample-wise without using test signals. We believe that this new scheme is more adequate for the control of large scale industrial processes than the traditional adaptive controller.

REFERENCES

