A reformulated co-tree flows method competitive with the global gradient algorithm for solving the water distribution system equations

Published: 01/01/2013

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
CASA-Report 13-18
July 2013

A reformulated co-tree flows method competitive with the global gradient
algorithm for solving the water distribution system equations

by

A Reformulated Co-tree Flows Method competitive with the Global Gradient Algorithm for solving the water distribution system equations.

Sylvan Elhay∗ Angus R. Simpson† Jochen Deuerlein‡ Bradley Alexander§ Wil H.A. Schilders¶

July 8, 2013

Abstract

Ezio Todini said of the Global Gradient Algorithm (GGA), which he developed with Pilati, that it is “the most appropriate fast convergent and robust tool for pipe network analysis”. Indeed, its speed and efficiency has seen it built into many popular water distribution simulation packages. In the face of the GGA’s success, alternative methods have not aroused much interest.

In this paper a Reformulated Co-Trees Method (RCTM) is presented. The new method has some similarities to the loop flows formulation and it is is shown, by application to a set of eight case study networks with between 932 and 19,647 pipes and between 848 and 17971 nodes, to be between 15% and 82% faster than the GGA in a setting, such as optimization using genetic algorithms, where the methods are applied hundreds of thousands, or even millions, of times to networks with the same topology.

It is shown that the key matrix for the RCTM can require as little as 7% of the storage requirements of the corresponding matrix for the GGA. This can allow for the solution of larger problems by the RCTM than might be possible for the GGA in the same computing environment.

∗Visiting Research Fellow, School of Computer Science, University of Adelaide, South Australia, 5005.
†Professor, School of Civil, Environmental and Mining Engineering, University of Adelaide, South Australia, 5005.
‡Senior Researcher, 3S Consult GmbH, Karlsruhe, Germany & Adjunct Senior Lecturer, School of Civil, Environmental and Mining Engineering, University of Adelaide, South Australia, 5005.
§Lecturer, School of Computer Science, University of Adelaide, South Australia, 5005.
Unlike other alternatives to the GGA, the following features, make the RCTM attractive:

(i) it does not require a set of initial flows which satisfy continuity, or (ii) there is no need to identify independent loops or the loops incidence matrix, (iii) a spanning tree and co-tree can be found from the matrix A_1 without the addition of virtual loops, particularly when multiple reservoirs are present, (iv) the RCTM does not require the determination of cut-sets or the addition of a ground node and pseudo-loops for each demand node, (v) it may not require special techniques to handle zero flow problems (a sufficient condition is given).

The paper also (i) reports a comparison of the sparsity of the key RCTM and GGA matrices for the case study networks, (ii) shows mathematically why the RCTM and GGA always take the same number of iterations and produce precisely the same iterates, (iii) establishes that the Loop-Flows Corrections and the Nullspace methods (previously shown by Nielsen to be equivalent) are actually identical to the RCTM.

INTRODUCTION

Nearly a quarter of a century ago Todini & Pilati (1988) introduced the GGA approach for solving Water Distribution System (WDS) equations. Almost twenty years later, Todini (2006) summarized the popularity of the GGA in comparison to other available approaches when he wrote “….the practical success of the Global Gradient algorithm as programmed in EPANET 2 (Rossman 2000) leaves no doubts that the easiness of the approach that does not require neither a topological analysis aimed at determining the appropriate independent loops nor the need for an initial balanced solution, make it the most appropriate fast convergent and robust tool for pipe network analysis.”

The speed with which the GGA executes the Newton iterations has probably contributed most to the method’s popularity. The GGA method determines the solution of a non-linear system of dimension $n_p + n_j$, where n_p is the number of pipes and n_j is the number of nodes at which the heads are unknown, by a two stage iteration in which the linear solver deals with a matrix of dimension only n_j. This, together with the fact that the matrix to be inverted is sparse and symmetric, leads to a
very fast algorithm.

The two points made by Todini about the need for the analysis to find loops and an initial, balanced solution were aimed at the Simultaneous Loop Flows Corrections method of Epp & Fowler (1970). That method requires the addition of virtual loops when multiple reservoirs are present and some tools from graph theory to determine an appropriate set of independent loops. It also requires an initial solution which satisfies continuity or mass balance to start the iterative process which determines the steady state solution. However, Todini’s comments refer to parts of the process that are done before iteration begins and, while they may be cumbersome, are only done once.

In a very nice paper Nielsen (1989) showed, among other things, that the Simultaneous Loop Flows Corrections method, itself a development of the sequential loop flows method of Hardy Cross (1936), is in fact what is called a nullspace method (Benzi, Golub & Liesen 2005). More recently Rahal (1995) published a method to solve what he called a co-tree formulation of the problem, a method which, it is shown in this paper, is one and the same as the Simultaneous Loop Flows Corrections method. The RCTM (in this paper the Simultaneous Loops Flows Corrections method and its variations will be referred to as RCTM except where they need to be distinguished) requires the solution at each iterative step of a system of linear equations of dimension \(n_c = n_p - n_j \), the number of co-tree flows or sometimes the number of loops in the system (depending on the number of reservoirs). The number \(n_c \) is frequently much smaller than \(n_j \). As for the case of the GGA, the matrix to be inverted in the RCTM is symmetric but perhaps because it has been thought to be dense, or because of the two criticisms made by Todini, the cotree flows method has not found favour and is not used in practice.

Nielsen (1989) also suggested permuting the columns of the unknown–head node–arc incidence matrix to make its top \(n_j \)-square block invertible. Ten years later Schilders (2009), while considering some candidates as preconditioners to be used in conjugate gradient solvers for systems similar to WDSs, suggested using row and column permutations of the unknown–head node–arc incidence matrix
to transform it to trapezoidal form, a form in which the top $n_j \times n_j$ block is lower triangular. Now, the top n_j-square block of such a transformed matrix defines the unknown–head node–arc incidence matrix for a spanning tree of the graph of the network and the bottom $n_c \times n_j$ block of the trapezoidal form defines the unknown–head node–arc incidence matrix for the corresponding co-tree of the graph of the network (Diestel 2010). In this paper a new straightforward matrix reduction technique is introduced which, when applied to the unknown–head node–arc incidence matrix of the co-tree, leads to a simplified reformulation of the Co-Trees Method. Efficiently implemented, this technique leads to an algorithm that, in many cases, is better in time and space than the GGA in settings where many networks with the same topology are to be solved. The new formulation

(a) requires neither the use of tools from graph theory to identify independent loops nor does it require the addition of virtual loops,

(b) like the method of Rahal (1995), does not require an initial solution which satisfies continuity,

(c) may require no special measures to deal with zero flows, which can lead to catastrophic failure of the GGA because of the singularity of the key matrix there.

For the eight case study networks studied here, the method (as it would be applied in a genetic or Evolutionary Algorithm (EA) optimization)

(a) has computation time that is between 87% and 55% that of the GGA, and

(b) has memory requirements that are much smaller than those of the GGA for some networks.

Item (a) is established by the application of the new formulation of the RCTM to a set of eight case study networks, the largest of which has nearly 20,000 pipes.

Item (b) is established by showing that the storage requirements for the RCTM, although larger than that of the GGA for some of the case study networks, is as little as 7% of the GGA requirement.
on other of the case study networks. Thus, in some cases, much larger problems can be solved by RCTM than GGA for the same amount of computer memory.

Todini (2006) considered the convergence properties of variations of the GGA and RCTM solution algorithms numerically and theoretically. Most of the methods considered in that paper are derived as linear transformations of the GGA. It is shown empirically there that all the flow-based algorithms require the same number of Newton iteration steps to reach exactly the same result when applied to certain example problems. In this paper the mathematical reason for the fact that the simultaneous loops method and the GGA always, not only take the same number of iterations to converge from the same starting value, but produce exactly the same iterates, is explained by deriving the two methods directly from the same basic Newton iteration for the steady-state heads and flows that solve the energy and continuity equations.

The results presented in this paper raise the question of which of the RCTM and GGA methods should be chosen in any particular case. A discussion of this question follows the comparison of the two methods later in the paper.

The rest of this paper is structured as follows. Some definitions and notation are introduced in the next section. The section following gives the derivation of the method, with some illustrative examples interspersed. An algorithmic description of the RCTM is then given, followed by a discussion of the relation of the RCTM to other methods. The numerical experiments which support the claims about the speed and storage requirements of the method are then presented and they are followed by a discussion on choosing which of the methods is most appropriate in a particular case. The conclusions section is followed by some appendices which contain material that is necessary for the full understanding of the paper but have been moved so as to not disrupt the flow of the exposition.
DEFINITIONS AND NOTATION

Consider a water distribution network of \(n_p \) pipes, \(n_j \) (< \(n_p \)) junctions or nodes and \(n_f \) fixed–head nodes. Suppose \(Q_j \) is the unknown flow for the \(j \)-th pipe, \(p_j \), which has area of cross section \(A_j \), length \(L_j \), diameter \(D_j \), and resistance factor \(r_j \). All the pipes in the system are assumed to have the same head loss exponent, \(n \), which is either \(n = 2 \) for Darcy–Weisbach head loss model or \(n = 1.852 \) for the Hazen–Williams head loss model. Let \(H_i \) denote the unknown head at the \(i \)-th node, \(v_i \).

Let \(q = \left(Q_1, Q_2, \ldots, Q_{n_p} \right)^T \) denote the vector of unknown flows, \(h = \left(H_1, H_2, \ldots, H_{n_j} \right)^T \) denote the vector of unknown heads, \(r = \left(r_1, r_2, \ldots, r_{n_p} \right)^T \) denote the vector of resistance factors for the pipes, \(d = \left(d_1, d_2, \ldots, d_{n_j} \right)^T \) denote the vector of nodal demands, and \(u \) denote the vector of dimension \(n_f \) of fixed-head elevations.

The relation between the heads at two ends, node \(v_i \) and node \(v_k \), of a pipe \(p_j \) and the flow in the pipe is defined by \(H_i - H_k = r_j Q_j |Q_j|^{n-1} \). Define (i) the square, diagonal matrix \(G \) (Todini & Pilati 1988) which has elements \([G]_{jj} = r_j |Q_j|^{n-1} \), \(j = 1, 2, \ldots, n_p \), (ii) \(F \) a diagonal \(n_p \times n_p \) matrix in which each diagonal element is the derivative with respect to \(Q \) of the element in the corresponding row of the vector \(G q \), (iii) the full column–rank, unknown–head node–arc incidence matrix \(A_1 \) of dimension \(n_p \times n_j \), and (iv) the fixed–head, node–arc incidence matrix, \(A_2 \), of dimension \(n_p \times n_f \).

The steady state flows and heads in the system are the solutions of the energy and continuity equations:

\[
f(q, h) = \begin{pmatrix} G(q) & -A_1 \\ -A_1^T & 0 \end{pmatrix} \begin{pmatrix} q \\ h \end{pmatrix} - \begin{pmatrix} A_2 u \\ d \end{pmatrix} = o.
\]

(1)

Denote by \(J \) the Jacobian of \(f \)

\[
J(q, h) = \begin{pmatrix} F(q) & -A_1 \\ -A_1^T & 0 \end{pmatrix}.
\]

The Newton iteration for (1) proceeds by taking given starting values \(q^{(0)}, h^{(0)} \) and repeatedly com-
puting, for \(m = 0, 1, 2, \ldots \), the iterates \(q^{(m+1)} \) and \(h^{(m+1)} \) from

\[
\begin{pmatrix}
F(q^{(m)}) - A_1 & \quad \quad \quad q^{(m+1)} \\
-A_1^T & \quad \quad \quad O
\end{pmatrix}
\begin{pmatrix}
h^{(m+1)}
\end{pmatrix}
= \begin{pmatrix}
F(q^{(m)}) - G(q^{(m)}) & \quad \quad \quad o \\
o^T & \quad \quad \quad O
\end{pmatrix}
\begin{pmatrix}
q^{(m)} \\
h^{(m)}
\end{pmatrix}
+ \begin{pmatrix}
A_2 u \\
d
\end{pmatrix}
\tag{2}
\]

until, if the iteration converges, the difference between successive iterates is sufficiently small. The block equations of (2) are, omitting for simplicity the dependency of both \(F \) and \(G \) on \(m \) and \(q \) since there is no ambiguity

\[
F q^{(m+1)} - A_1 h^{(m+1)} = (F - G) q^{(m)} + A_2 u, \tag{3}
\]

\[
-A_1^T q^{(m+1)} = d. \tag{4}
\]

DERIVATION OF THE METHOD

Suppose \(Y \) is a graph. A spanning tree, \(S \), of \(Y \) is a subset of the edges of \(Y \) that spans every node in \(Y \) and which is also a tree (Diestel 2010). The co-tree of \(Y \) is made up of all the edges in \(Y \) which are not in \(S \).

A method is now derived that begins by manipulating the incidence matrix \(A_1 \) to find matrices, \(T_1 \) and \(T_2 \), which are the unknown–head node-arc incidence matrices of, respectively, a spanning tree of the network’s graph and the corresponding co-tree of the network’s graph. From these two matrices a reduction of the \(A_1 \) matrix is derived which leads to a solution of (2) by solving a co-tree formulation of the problem. The method leads to an algorithm during each iterate of which (i) the co-tree flows are found and (ii) from them the spanning tree flows are found.

Recall that \(n_c = n_p - n_j \) denotes the dimension of the co–tree in the graph of the network. The integer \(n_c \) is also approximately the number of loops in the system. For any unknown–head node-arc incidence matrix \(A_1 \) there exist (Schilders 2009) two (orthogonal) permutation matrices \(P \in \mathbb{R}^{n_p \times n_p} \) and \(R \in \mathbb{R}^{n_j \times n_j} \) and corresponding \(T_1 \in \mathbb{R}^{n_j \times n_j} \), lower triangular and \(T_2 \in \mathbb{R}^{n_c \times n_j} \) which are such
that

\[PA_1 R = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} \overset{\text{def}}{=} T. \] (5)

A simple proof that the matrix \(A_1 \) has full rank and an algorithm for the determination of the permutations \(P \) and \(R \) can be found in the Appendix. It is important to note in passing that \(T_1 \) is invertible because it is a lower triangular matrix with non–zero diagonal elements.

Example 1 Consider the network shown in Figure 1. It has \(n_p = 6 \) pipes, \(n_j = 4 \) nodes at which the head is unknown, and \(n_f = 1 \) reservoir. The co–tree has \(n_c = n_p - n_j = 2 \) pipes. Note that if the pipe and node characteristics for this network are symmetric, pipe \(p_5 \) will have zero flow at steady state. As will be seen, this does not cause a failure of the method, unlike the GGA on the same network if the head loss is modeled by the Hazen-Williams formula (Elhay & Simpson 2011b).

The unknown–head node-arc incidence matrix \(A_1 \) for the network in Figure 1 and the matrices \(T_1, T_2 \) on the right–hand–side of (5) which result from taking the rows in the order \(s = (6, 2, 3, 4, 5, 1) \) and its columns in the order \(t = (1, 3, 2, 4) \) are

\[
A_1 = \begin{pmatrix}
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 0
\end{pmatrix}, \quad T_1 = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix} \quad \text{and} \quad T_2 = \begin{pmatrix}
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{pmatrix},
\]

and the lower triangular shape of \(T_1 \) is now evident. The spanning tree for this particular choice of permutations (shown in Figure 1 as dark lines) is thus made up of pipes \(p_6, p_2, p_3, p_4 \) and the co-tree is made up of pipes \(p_5, \) and \(p_1 \). The permutation matrix \(P \), for this example, is an \(n_p \times n_p = 6 \times 6 \) identity with its rows taken in the order \(s \) and the permutation matrix \(R \) is a \(n_j \times n_j = 4 \times 4 \) identity with its columns taken in the order \(t \).
By successively subtracting appropriate multiples of rows $n_j, n_j - 1, \ldots, 2, 1$ of T_1 from rows $1, 2, \ldots, n_c$ of T_2 it is possible to zero the whole of T_2. This process is similar to Gaussian elimination and it produces a lower triangular matrix $L \in \mathbb{R}^{n_p \times n_p}$ which is such that

$$LPA_1R = L\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} T_1 \\ O \end{pmatrix}.$$ (6)

Therefore

$$A_1 = P^T \Lambda^{-1}\begin{pmatrix} T_1 \\ O \end{pmatrix} R^T.$$ (7)

Let I_{n_j} and I_{n_c}, respectively, denote identity matrices of dimension n_j and n_c. From its construction it follows that L can be blocked

$$L = \begin{pmatrix} I_{n_j} & O \\ L_{21} & I_{n_c} \end{pmatrix} \text{ and so } L^{-1} = \begin{pmatrix} I_{n_j} & O \\ -L_{21} & I_{n_c} \end{pmatrix},$$ (8)

as is easily verified by forming the product LL^{-1}. An algorithm which produces L is given in the Appendix. In fact, the matrix L_{21} forms a part of a basis for the null space of the permuted node-arc incidence matrix PA_1R, as shown in (26).

Example 2 Consider the matrices found in Example 1. Multiplying the matrix T of (5) on the left by $L^{(1)}$ has the effect of subtracting the last row of T_1 from T_2, thereby zeroing both rows of the last column of T_2 (shown in bold).

$$L^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$ (9)

Similarly, multiplying T on the left by $L^{(2)}$ has the effect of zeroing both rows in the last two columns.
of T_2 (shown in bold):

$$L^{(2)}T = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{pmatrix} =
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0
\end{pmatrix}.$$

Finally, multiplying the matrix T on the left by $L^{(3)}$ has the effect of zeroing both rows in all four columns of T_2 (shown in bold):

$$L^{(3)}T = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{pmatrix} =
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
T_1 \\
O
\end{pmatrix}.$$

Thus, $L^{(3)}$ is the matrix L of (8) and L_{21} is the $n_p - n_j \times n_j = 2 \times 4$ bottom-left block of L (shown in bold):

$$L_{21} = \begin{pmatrix}
0 & 0 & 1 & -1 \\
0 & -1 & 1 & 0
\end{pmatrix}.$$

The block structure of L indicated in (8) is now evident. □

It is now possible, using the representation of A_1 given in (7) to derive a solution of the Newton equations (3) and (4) which advances by finding, at each iteration, the flows in the co-tree and then the flows in the spanning tree.

Substituting (7) into the first block equation of the Newton method, (3), gives

$$F_q^{(m+1)} - P^T L^{-1} \begin{pmatrix} T_1 \\ O \end{pmatrix} R^T h^{(m+1)} = (F - G) q^{(m)} + A_2 u$$
and left–multiplying this relation by LP and noting that the product $P^TP = PP^T = I$ gives

$$LPFP^TPq^{(m+1)} - \begin{pmatrix} T_1 \\ O \end{pmatrix} R^T h^{(m+1)} = LP(F - G)P^TPq^{(m)} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix},$$

where the last term on the right has been denoted by $LP A_2 u = (a_1^T \ a_2^T)^T$. Denoting

$$\hat{q}^{(m+1)} = Pq^{(m+1)}, \hat{q}^{(m)} = Pq^{(m)}, \hat{h}^{(m+1)} = R^T h^{(m+1)}, \hat{F} = PFP^T, \text{ and } \hat{G} = PGP^T$$

allows (9) to be rewritten as

$$L\hat{F}\hat{q}^{(m+1)} - \begin{pmatrix} T_1 \\ O \end{pmatrix} \hat{h}^{(m+1)} = L(\hat{F} - \hat{G})\hat{q}^{(m)} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$ (11)

Now, let \hat{F}, \hat{G} and $\hat{q}^{(m)}$ be blocked conformally, recalling that \hat{F} and \hat{G} are both diagonal, as

$$\hat{F}_1 = \begin{pmatrix} n_j & n_c \\ n_c & \hat{F}_2 \end{pmatrix}, \quad \hat{G}_1 = \begin{pmatrix} n_j & n_c \\ n_c & \hat{G}_2 \end{pmatrix}, \quad \hat{q}^{(m)} = \begin{pmatrix} \hat{q}_1^{(m)} \\ \hat{q}_2^{(m)} \end{pmatrix}.$$

Then, $\hat{q}_1^{(m)}$ is a vector of the flows in the spanning tree of the network’s graph at the m-th iteration and $\hat{q}_2^{(m)}$ is a vector of the flows in the co-tree of the network’s graph at the same iteration. With this notation (11) can be rewritten as

$$\begin{pmatrix} I_{n_j} & O \\ L_{21} & I_{n_c} \end{pmatrix} \begin{pmatrix} \hat{F}_1 \\ \hat{F}_2 \end{pmatrix} \begin{pmatrix} \hat{q}_1^{(m+1)} \\ \hat{q}_2^{(m+1)} \end{pmatrix} - \begin{pmatrix} T_1\hat{h}^{(m+1)} \\ O \end{pmatrix} = \begin{pmatrix} I_{n_j} & O \\ L_{21} & I_{n_c} \end{pmatrix} \begin{pmatrix} \hat{F}_1 - \hat{G}_1 \\ \hat{F}_2 - \hat{G}_2 \end{pmatrix} \begin{pmatrix} \hat{q}_1^{(m)} \\ \hat{q}_2^{(m)} \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix},$$

which expands to

$$\begin{pmatrix} \hat{F}_1\hat{q}_1^{(m+1)} \\ L_{21}\hat{F}_1\hat{q}_1^{(m+1)} + \hat{F}_2\hat{q}_2^{(m+1)} \end{pmatrix} - \begin{pmatrix} T_1\hat{h}^{(m+1)} \\ O \end{pmatrix} = \begin{pmatrix} \hat{F}_1 - \hat{G}_1 \hat{q}_1^{(m)} \\ L_{21}(\hat{F}_1 - \hat{G}_1)\hat{q}_1^{(m)} + (\hat{F}_2 - \hat{G}_2)\hat{q}_2^{(m)} \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

The first block equation of the Newton method, (3), is itself now in two blocks: the first is

$$\hat{F}_1\hat{q}_1^{(m+1)} - T_1\hat{h}^{(m+1)} = (\hat{F}_1 - \hat{G}_1)\hat{q}_1^{(m)} + a_1$$

and the second is

$$L_{21}\hat{F}_1\hat{q}_1^{(m+1)} + \hat{F}_2\hat{q}_2^{(m+1)} = L_{21}(\hat{F}_1 - \hat{G}_1)\hat{q}_1^{(m)} + (\hat{F}_2 - \hat{G}_2)\hat{q}_2^{(m)} + a_2.$$
Similarly, the second block equation of the Newton method, (4), (which is also just the continuity equation) can be written, in view of (7), as

\[-A^T \vec{q}^{(m+1)} = \begin{pmatrix} P^T L^{-1} \left(T_1 \right) R \end{pmatrix}^T q^{(m+1)} = R \left(T_1^T O \right) L^{-T} P \vec{q}^{(m+1)} = -d.\]

Multiplying this relation on the left by R^T (which is the inverse of R by virtue of orthogonality) gives,

denoting $\hat{d} = R^T d$ and substituting for L using (8),

\[
\begin{pmatrix} T_1^T O \end{pmatrix} \begin{pmatrix} I_{n_j} & -L_{21}^T \end{pmatrix} \begin{pmatrix} \hat{q}_1^{(m+1)} \\ \hat{q}_2^{(m+1)} \end{pmatrix} = -\hat{d}.
\]

On multiplication, this expands to

\[
T_1^T \left(\hat{q}_1^{(m+1)} - L_{21} \hat{q}_2^{(m+1)} \right) = -\hat{d}. \tag{14}
\]

Multiplying (14) on the left by T_1^{-T} and rearranging gives the important constraint between $\hat{q}_1^{(m+1)}$ and $\hat{q}_2^{(m+1)}$,

\[
\hat{q}_1^{(m+1)} = L_{21} \hat{q}_2^{(m+1)} - T_1^{-T} \hat{d}. \tag{15}
\]

Eq. (15) can also be derived from Eq. (13a) of Nielsen (1989). Substituting for $\hat{q}_1^{(m+1)}$ in (13) with (15) and denoting

\[
V = L_{21} \hat{F}_1 L_{21}^T + \hat{F}_2, \tag{16}
\]

means that (13) can be written, after rearrangement, as

\[
V \hat{q}_2^{(m+1)} = L_{21} \left(\hat{F}_1 - \hat{G}_1 \right) \hat{q}_1^{(m)} + \left(\hat{F}_2 - \hat{G}_2 \right) \hat{q}_2^{(m)} + \alpha_2 + L_{21} \hat{F}_1 T_1^{-T} \hat{d}. \tag{17}
\]

Strictly speaking V should be denoted with a superscript, $V^{(m)}$, because of its dependence on m, the iteration number: it is different for each m, as are the matrices \hat{F}_1, \hat{F}_2, \hat{G}_1 and \hat{G}_2. However, once again the superscripts will not be shown in the interests of clarity.
Now, rearranging (12) gives

\[
T_1 \hat{h}^{(m+1)} = \hat{F}_1 \hat{q}_1^{(m+1)} - (\hat{F}_1 - \hat{G}_1) \hat{q}_1^{(m)} - a_1.
\]

(18)

Together (17), (15) and (18) form the basis of an iterative scheme for solving (2) provided \(V \) is invertible.

The iterative scheme consists of repeatedly executing steps (b)(i) and (b)(ii), below, until a suitable stopping test, based on the difference between successive iterates, is satisfied. The scheme only requires an initial set, \(\hat{q}_2^{(0)} \), of co-tree flows (which can be chosen arbitrarily). When the iterates are sufficiently close for the stopping test to be satisfied, the heads are found by solving (18) for \(\hat{h}_1^{(m+1)} \) using a forward substitution. The required solution flows and heads are then found by inverting the permutation \(P \) in (10), that took \(q^{(m+1)} \) to \(\hat{q}^{(m+1)} \) and applying it: \(q^{(m+1)} = P^T \hat{q}^{(m+1)} \). Similarly, the solution heads can be found as \(h^{(m+1)} = R \hat{h}^{(m+1)} \).

Of course, the permutation matrices, \(P \) and \(R \), would not be formed explicitly in the practical algorithm and all the permutations would be done by indirect addressing via permutation vectors. They are shown in matrix form only to simplify the exposition. We note also that all the terms which do not depend on the flows or heads, such as the term \(T_1^{-T} \hat{d} \) in (15) or \(a_1 \) and \(a_2 \), can be pre-computed to improve the efficiency of the algorithm implementation. A robust implementation of the method would also compute the residuals of the system (1) at completion to reject as unsatisfactory any solution for which the residual is large (see Simpson & Elhay (2011) for details).

THE RCTM ALGORITHM

The algorithm can be summarized as:

Input

A set of initial co-tree flows \(\hat{q}_2^{(0)} \), the permutations \(P \) and \(R \) of (5), and the matrix \(L_{21} \) of (8).
Algorithm

(a) Compute \(\hat{q}_1^{(0)} \) using (15).

(b) for \(m = 1, 2, \ldots \), until the stopping test is satisfied do

 (i) Solve (17) for the co-tree flows, \(\hat{q}_2^{(m+1)} \).

 (ii) Use (15) to get the corresponding spanning tree flows, \(\hat{q}_1^{(m+1)} \) which satisfy continuity.

 end \(m \)-loop

(c) Solve (18) for \(\hat{h}_1^{(m+1)} \).

(d) Get the solution flows from \(\hat{q}^{(m+1)} = P^T \hat{q}^{(m+1)} \) and the solution heads from \(\hat{h}^{(m+1)} = Rh^{(m+1)} \).

End

Note that relation (15) can be viewed as a constraint which exists between the flows in the pipes which make up the spanning tree and the flows in the co–tree. For any given set of co-tree flows (15) specifies the unique set of spanning tree flows which ensure that all the flows in the network satisfy continuity.

THE RELATION OF RCTM TO OTHER METHODS

In the Appendix it is shown that the RCTM encapsulated by (15), (17) and (18) is, in fact, a nullspace method (Benzi et al. 2005, 32) in the following sense: it finds one of the infinite number of sets of flows which satisfy the continuity equation (4) and then uses the Newton method to find, from within the left nullspace of the \(A_1 \) matrix, the correction to those flows which ensures that they also satisfy the energy equation (3). Thus, it is one and the same as the Simultaneous Loop Flows Correction method of Epp & Fowler (1970). Since RCTM also finds the co-tree flows at each step (in (17)) it is also necessarily equivalent to the Co-tree method of Rahal.
It is also shown in the Appendix that the matrix V of (16) can also be written as $V = Z^T \hat{F} Z$, $Z \in \mathbb{R}^{n_p \times n_c}$ a full column-rank matrix whose columns span the left nullspace of T. Importantly, V may be invertible even though \hat{F} is not. In fact, $Z^T \hat{F} Z$ will be invertible as long as $\hat{F} Z$ has full rank (See the Appendix for details). The invertibility of V even though F may be singular is in stark contrast to the GGA which fails catastrophically if zero flows cause the matrix \hat{F} to be singular (Elhay & Simpson 2011b). Thus, using the method described here may obviate the need to take special measures to handle zero flows. A regularization method such as the one presented in Elhay & Simpson (2011b) may be required if the condition of \hat{F} is too large or even to handle cases where the Jacobian is singular since even then the solution to the system may still be obtainable (see e.g. Elhay & Simpson (2011a) for details).

The RCTM described above uses the Newton method to find the flows and heads in the WDS. Observe that the steady state heads and flows of (1) satisfy the equation which forms the basis of the Newton iteration:

$$
\begin{pmatrix}
F - A_1
\end{pmatrix}
\begin{pmatrix}
q
\end{pmatrix}
=
\begin{pmatrix}
F - G_o & o
\end{pmatrix}
\begin{pmatrix}
q
\end{pmatrix}
+
\begin{pmatrix}
A_2 u
\end{pmatrix}.
$$

(19)

Both the GGA and the RCTM iterations use this form and so they produce precisely the same flow iterates as each other (see the Appendix for the derivation of the GGA from the same equations). The GGA produces heads and flows at each iteration while the RCTM iterates only on the flows because (15) and (17) do not involve the heads. Even so, the two methods produce exactly the same flow iterates as each other. In the RCTM the heads need only be found once after the steady state flows are determined.

Comparison of the RCTM and GGA methods

In this section it is shown that, if the solutions are required to many problems with the same topology, the efficiently implemented RCTM may provide a significant improvement over the GGA in
time and/or space.

The RCTM and the GGA were each applied to a set of eight case study networks with between 932 and 19,651 pipes and between 848 and 17,977 nodes and neither pumps nor valves. The computation times of the two methods were compared. Both methods were implemented in Matlab (Mathworks 2008) sparse arithmetic with the computationally intensive parts of the methods run in C++ code routines written specially for the purpose. The GGA code used is an efficient implementation of the method described in Simpson & Elhay (2011) and the RCTM code is an efficient implementation of the method described in the previous sections of this paper. The basic details of the networks considered are given in Table 1 and more detail about them may be found in Simpson, Elhay & Alexander (2012).

The use of an EA in the design of a network may require the determination of the steady state solutions for hundreds of thousands, or even millions, of cases in which all the networks have exactly the same topology but each case has a different set of parameters (such as, for example, pipe diameters). It is one purpose of this paper to establish that the RCTM, in applications where the solutions are required to many problems with the same topology, can be significantly faster than the GGA method and/or can require much less computer memory.

The speed advantage of the RCTM stems from the fact that (i) the permutations P and R in (5), and (ii) the matrix L_{21} of (14)–(17) need to be determined only once at the start of the design process because all the generations of the EA use the same P, Q and L_{21} since the topology remains unchanged. Thus, in all the timings that follow the times taken to determine P, Q and L_{21} have been excluded from the analysis. It would be necessary, in a one-off calculation using the RCTM, to allow the extra time to compute these (which accounts for between 10% and 55% of the total time of the RCTM on the case studies presented here).

In those cases where the RCTM has a space advantage, it derives from the fact that the key matrix which has to be solved at each iteration of the method has fewer non–zero elements.
Timings

Columns 2–5 of Table 1 show the number, \(n_p \), of pipes, \(n_j \), of nodes, \(n_f \), of reservoirs, and, \(n_c \), the dimension of the co–tree. The next two columns show the number of non–zero elements in the matrices \(V \) of (16) and \(W \) of (27) and the last column in Table 1 shows the ratio of these numbers as a percentage. Of course, the number of non–zeros in \(V \) and \(W \) for a particular case is a function of the spanning tree chosen for that case and different spanning trees could lead to quite different matrix sparsities.

Each method was applied 15 times to each of the case study networks on a single processor PC (the calculations were repeated because small variations in the way the operating system runs background processes lead to variations in the time taken for the same program to run on the same data). The means of the times for solution, \(\tau_{RCTM} \), \(\tau_{GGA} \) and the means of their ratios \(\tau_{RCTM}/\tau_{GGA} \) were computed. The standard errors of the ratios were also computed and from these the 95% confidence intervals for the ratios of the mean times were derived. The mean times for solution, the mean ratios of times for solution, and the 95% confidence intervals, \(I_{95} \), are shown in columns 2–5 of Table 2.

In Table 3 are listed, for illustration, the actual solution times for the RCTM and GGA methods and their ratios for the 15 computer runs on Network \(N_1 \).

From Table 2 it is evident that the GGA takes between 15% and 82% more time to run than the RCTM on the case studies. Clearly, the case in which the RCTM runs in 55% of the time of the GGA, on a computation that takes a week justifies the investment required to develop the RCTM program code.

Although it is not the only factor, one important factor which influences the ratio of the computation times for the two methods is the number of non–zeros in the matrices \(V \), and \(W \): the more non–zeros there are in a matrix, the more computation time will be required to solve a system with
that matrix if all other thing are equal. But the distribution of the non–zeros within the matrix also
drives a determining role and this probably explains the deviation from direct proportionality between
the number of non-zeros and the timings observed in the result reported here.

Storage requirements

These numbers shown in columns 6–8 of Table 1 are important because only the non–zero elements
of a matrix are stored in sparse matrix implementations of matrix solvers such as those used here.
Thus, the RCTM would require only 7% the storage locations of the GGA for the solution of \(N_5 \). Of
course, in some cases, such as \(N_4 \) and \(N_8 \) the RCTM has similar or higher storage requirements than
the GGA. So, it may be possible to solve some problems using the RCTM on a particular machine
while it is impossible to solve those same problems on the same machine using the GGA because of
the GGA’s memory requirements.

A strategy to decide which of the methods to use in a particular case is outlined next.

Choosing between the RCTM and GGA

The choice between the two methods presented here can be made on any or all of three con-
siderations: (i) the speed of computation, (ii) the storage requirements or (iii) the presence of zero
flows.

In a setting such as network design with an EA it may well be worth investing some effort to
decide which method is preferable. The matrices \(V \) and \(W \) can be calculated and the number of
non–zero elements quickly determined. Prohibitive memory requirements for one method but not the
other might decide the question. If computer memory is not an issue, then the same problem could
be solved once by each method and the faster method chosen for the EA solution.

If the computation times and storage requirements are comparable then the decision might be based
on the occurrence of zero flows and the possibility that they might occur in some of the variations that arise during the optimization. Any significant difference between the two methods, if such exists for the problem in question, will help decide the choice.

CONCLUSIONS

A reformulation which improves the Cotrees Method, the RCTM, is introduced. The improved method is shown, by application to a set of eight case study networks with between 932 and 19,647 pipes and between 848 and 17971 nodes, to take between 55% and 87% of the time taken by the GGA to solve the same problems in a setting (e.g. evolutionary algorithms) where the methods are applied hundreds of thousands, or even millions, of times to networks with the same topology.

It is shown that the key matrix for the RCTM can require as little as 7% of the storage requirements of the corresponding matrix for the GGA. This can allow for the solution of larger problems by the RCTM than might be possible for the GGA in the same computing environment.

Unlike other alternatives to the GGA, several features, aside from the faster execution time mentioned above, make the RCTM attractive: (i) it does not require a set of initial flows which satisfy continuity, (ii) there is no need to identify independent loops or the loops incidence matrix, (iii) a spanning tree and co-tree can be found simply from the incidence matrix A_1 without the addition of virtual loops, particularly when multiple reservoirs are present, (iv) the RCTM does not require the addition of a ground node and pseudo-loops or the determination of cut-sets, (v) it may not require special techniques to handle zero flow problems (a sufficient condition is given).

This paper also (i) reports a comparison of the sparsity of the key RCTM and GGA matrices for the case study networks, (ii) shows mathematically why the RCTM and GGA always take the same number of iterations and produce precisely the same iterates, (iii) establishes that the RCTM, the Loop Flow Corrections Method and the Nullspace Method are one and the same.
ACKNOWLEDGMENTS

The authors gratefully thank Prof. Caren Tischendorf for helpful discussions and advice with the manuscript.

References

THE UNKNOWN–HEAD NODE–ARC INCIDENCE MATRIX HAS FULL RANK

Consider a fully connected network with at least one reservoir. Let \(A_1 \in \mathbb{R}^{n_p \times n_j} \), defined by

\[
[A_1]_{ji} = \begin{cases}
-1 & \text{if the flow in pipe } j \text{ enters the unknown–head node } i, \\
0 & \text{if pipe } j \text{ does not connect to the unknown–head node } i, \\
1 & \text{if the flow in pipe } j \text{ leaves the unknown–head node } i
\end{cases}
\]

be the unknown–head node–arc incidence matrix for this network. It has one row for each pipe and one column for each node at which the head is unknown.

This matrix always has full (column) rank. To see this observe that since there is at least one pipe which is connected to only one node at which the head is unknown: it could be a pipe connected to a reservoir or a leaf node at an extremity of the network. This means that the row in \(A_1 \) corresponding to this pipe has exactly one non–zero element. Permute the rows and columns of \(A_1 \) in such a way as to place that element (always a \(\pm 1 \)) in the top left-hand (the \((1,1)\)) position. Now consider the submatrix of \(A_1 \) formed by excluding the first row and the first column. This \(n_p - 1 \times n_j - 1 \) submatrix also has at least one pipe connected to only one node at which the head is unknown – the pipe which was connected to the node just removed is one such. The row for this pipe has exactly one non–zero element. So it is possible to repeat the process of permuting rows and columns to place this element in the \((1,1)\) position of the (reduced dimension) submatrix and then consider the \(n_p - 2 \times n_j - 2 \) submatrix formed by excluding first row and column of this submatrix. In fact, this process can be performed a total of \(n_j \) times at which point the top \(n_j \times n_j \) square of the row and column permuted \(A_1 \) matrix is a lower triangle with all diagonal elements \(\pm 1 \). This establishes that \(A_1 \) has full column rank.

The top \(n_j \times n_j \) square of the permuted \(A_1 \) represents a spanning tree of the network and the bottom \(n_p - n_j \) rows, represent the co–tree, the pipes not in the spanning tree which make up the
network loops.

THE ALGORITHM TO COMPUTE THE MATRIX L

A Matlab implementation of the algorithm to determine the matrix L of (6), which zeros the matrix T_2 by a process similar to Gaussian elimination, is presented in this section. It is assumed that the P and R of (5) have been applied to A_1 to produce the matrices T_1 and T_2.

```matlab
% algorithm to find L from T1, T2
L=eye(np,np);
for j=nj:-1:1
  for k=1:njp
    m=T2(k,j)/T1(j,j);
    L(k+nj,j)=-m;
    T2(k,j)=0;
    for i=1:(j-1)
      T2(k,i)=T2(k,i)-m*T1(j,i);
    end %i
  end %k
end %j
```

THE INVERTIBILITY OF $Z^T FZ$

Suppose that $Z \in \mathbb{R}^{n_p \times n_c}$, $n_p > n_j$ has full rank and that $F = \text{diag}\{f_1, f_2, \ldots, f_{n_p}\}$ is non-negative definite. Under what conditions is $Z^T FZ$ invertible?

Denoting

$$Z = \begin{pmatrix} z_1^T \\ z_2^T \\ \vdots \\ z_{n_p}^T \end{pmatrix}$$

so $Z^T = (z_1 \ z_2 \ \ldots \ z_{n_p})$

gives that $W = Z^T FZ = \sum_{k=1}^{n_p} f_k z_k z_k^T$. If more than n_j of the diagonal elements of F vanish then W is certainly singular because it is not then possible to find n_c linearly independent terms $f_k z_k z_k^T$.

Since Z has full rank it follows that, if FZ has full rank then W is invertible. Another way of saying this is: Let \hat{Z} be the matrix formed by deleting the rows z_k^T for which $f_k = 0$. If \hat{Z} has full rank then W is invertible.

THE RCTM IS A NULLSPACE METHOD

From (5) it follows that $A_1^T = RT^T P$ and so the continuity equation, (4), can be written $RT^T P q^{(m+1)} = -d$ or, after rearrangement, as $T^T P q^{(m+1)} = -P^T d$ and this is just

$$-T^T \hat{q}^{(m+1)} = \hat{d}. \tag{21}$$

Let Z be a matrix whose columns span the left nullspace of T:

$$Z^T T = O. \tag{22}$$
Suppose the vector $q^{(m+1)}$ is one of the infinite number of solutions of the under-determined linear system in (21). A vector $v^{(m+1)}$ is sought which is such that

$$q^{(m+1)} = q^{(m+1)} + Zv^{(m+1)}$$

(23)

also satisfies the energy equation

$$\hat{F}q^{(m+1)} - T\hat{h}^{(m+1)} = (\hat{F} - \hat{G})q^{(m)} + L^{-1}\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

(24)

Using a correction term of the form $Zv^{(m+1)}$ ensures that the resulting vector $\hat{q}^{(m+1)}$ still satisfies (21) because the added term lies in the left nullspace of T. Substituting the right–hand–side of (23) into (24) gives

$$\hat{F}(q^{(m+1)} + Zv^{(m+1)}) - T\hat{h}^{(m+1)} = \left(\hat{F} - \hat{G}\right)q^{(m)} + L^{-1}\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - \hat{F}q^{(m+1)}.$$

which can be rewritten as

$$\hat{F}Zv^{(m+1)} - T\hat{h}^{(m+1)} = \left(\hat{F} - \hat{G}\right)q^{(m)} + L^{-1}\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - \hat{F}q^{(m+1)}.$$

Multiplying this relation on the left by Z^T gives

$$Z^T\hat{F}Zv^{(m+1)} = Z^T\left[\left(\hat{F} - \hat{G}\right)q^{(m)} + L^{-1}\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - \hat{F}q^{(m+1)}\right]$$

(25)

because the term $Z^T\hat{h}^{(m+1)} = 0$ by virtue of (22). Thus, (25) is the key equation in the nullspace method. It can be seen that (17) is equivalent to (25) by choosing Z as

$$Z = \begin{pmatrix} L_{21}^T \\ I_{nc} \end{pmatrix}$$

since this matrix does indeed span the left nullspace of PA_1R because, as is easily seen from the second block equation of (6),

$$Z^T PA_1R = (L_{21}^T I_{nc}) PA_1R = 0.$$

(26)

Using this choice of Z gives, by direct evaluation, that

$$Z^T \hat{F}Z = (L_{21}^T I_{nc}) \begin{pmatrix} \hat{F}_1 \\ \hat{F}_2 \end{pmatrix} \begin{pmatrix} L_{21}^T \\ I_{nc} \end{pmatrix} = L_{21}^T \hat{F}_1 L_{21} + \hat{F}_2 = V$$

of (16) and expansion of the right–hand–side of (25) shows that it is precisely the right–hand–side of (17). This establishes that the RCTM is indeed the nullspace method.

WHY THE GGA AND RCTM PRODUCE EXACTLY THE SAME ITERATES FOR THE SAME STARTING VALUES

The RCTM was derived to solve for the iterates in the Newton equations (3) and (4). Nielsen (1989) points out that the RCTM and GGA methods produce exactly the same flow iterates for the same starting values (the heads at each iteration, were they to be computed in the RCTM, would also
agree exactly). The proof for this rests on the fact that the GGA method can also be derived from (3) and (4).

Multiplying (3) on the left by \(-A_1F^{-1}\) and rearranging gives

\[
A_1^T F^{-1} A_1 h^{(m+1)} = -A_1 F^{-1} \left((F - G)q^{(m)} + A_2 u \right) + A_1^T q^{(m+1)}.
\]

Replacing the last term on the right-hand-side by \(-d\) using (4) gives

\[
A_1^T F^{-1} A_1 h^{(m+1)} = -A_1 F^{-1} \left((F - G)q^{(m)} + A_2 u \right) - d
\]

which is precisely the first block equation of the GGA (see Simpson & Elhay (2011) for further details). The GGA equation for the flows is unchanged from (4). The key matrix which must be inverted here is

\[
W = A_1^T F^{-1} A_1. \tag{27}
\]

If zero flows cause some elements of \(F\) to vanish the method fails catastrophically because then neither \(F^{-1}\) nor \(W\) exist.

TABLES

<table>
<thead>
<tr>
<th>ID</th>
<th>(n_p)</th>
<th>(n_f)</th>
<th>(n_c)</th>
<th>(nnz(V))</th>
<th>(nnz(W))</th>
<th>(\frac{nnz(V)}{nnz(W)}) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_1)</td>
<td>932</td>
<td>848</td>
<td>8</td>
<td>350</td>
<td>2682</td>
<td>13%</td>
</tr>
<tr>
<td>(N_2)</td>
<td>1118</td>
<td>1039</td>
<td>2</td>
<td>79</td>
<td>1141</td>
<td>35%</td>
</tr>
<tr>
<td>(N_3)</td>
<td>1975</td>
<td>1770</td>
<td>4</td>
<td>205</td>
<td>2491</td>
<td>44%</td>
</tr>
<tr>
<td>(N_4)</td>
<td>2465</td>
<td>1890</td>
<td>3</td>
<td>575</td>
<td>6855</td>
<td>102%</td>
</tr>
<tr>
<td>(N_5)</td>
<td>2509</td>
<td>2443</td>
<td>2</td>
<td>66</td>
<td>534</td>
<td>7%</td>
</tr>
<tr>
<td>(N_6)</td>
<td>8585</td>
<td>8392</td>
<td>2</td>
<td>193</td>
<td>2633</td>
<td>10%</td>
</tr>
<tr>
<td>(N_7)</td>
<td>14830</td>
<td>12523</td>
<td>7</td>
<td>2307</td>
<td>31601</td>
<td>77%</td>
</tr>
<tr>
<td>(N_8)</td>
<td>19647</td>
<td>17971</td>
<td>15</td>
<td>1676</td>
<td>70942</td>
<td>124%</td>
</tr>
</tbody>
</table>

Table 1: The case study networks, their characteristics, the number of non-zero elements in the key matrices, \(V\) for RCTM and \(W\) for the GGA method, and their ratios.
Table 2: The case study networks showing the estimates of the mean times of the two methods, the mean ratio of times and the 95% confidence intervals.

<table>
<thead>
<tr>
<th>ID</th>
<th>$\tau_{RCTM}(s)$</th>
<th>$\tau_{GGA}(s)$</th>
<th>$\frac{\tau_{GGA}}{\tau_{RCTM}}$</th>
<th>I_{95}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td>0.0168</td>
<td>0.0307</td>
<td>1.82</td>
<td>[1.78, 1.86]</td>
</tr>
<tr>
<td>N_2</td>
<td>0.0158</td>
<td>0.0280</td>
<td>1.77</td>
<td>[1.68, 1.86]</td>
</tr>
<tr>
<td>N_3</td>
<td>0.0321</td>
<td>0.0483</td>
<td>1.50</td>
<td>[1.45, 1.56]</td>
</tr>
<tr>
<td>N_4</td>
<td>0.0404</td>
<td>0.0525</td>
<td>1.30</td>
<td>[1.25, 1.34]</td>
</tr>
<tr>
<td>N_5</td>
<td>0.0282</td>
<td>0.0489</td>
<td>1.74</td>
<td>[1.65, 1.82]</td>
</tr>
<tr>
<td>N_6</td>
<td>0.0970</td>
<td>0.1779</td>
<td>1.84</td>
<td>[1.82, 1.85]</td>
</tr>
<tr>
<td>N_7</td>
<td>0.2346</td>
<td>0.2682</td>
<td>1.15</td>
<td>[1.11, 1.20]</td>
</tr>
<tr>
<td>N_8</td>
<td>0.4668</td>
<td>0.5414</td>
<td>1.29</td>
<td>[0.99, 1.58]</td>
</tr>
</tbody>
</table>

Table 3: The times, $t_{RCTM}(s)$ and $t_{GGA}(s)$, for each of the 15 repetitions of the RCTM and GGA methods applied to network N_1 and the ratios t_{GGA}/t_{RCTM} of the times.
Figure 1: The network discussed in the examples with the spanning tree shown by the darker lines.
List of Figures

1. The network discussed in the examples with the spanning tree shown by the darker lines. 27

List of Tables

1. The case study networks, their characteristics, the number of non-zero elements in the key matrices, V for RCTM and W for the GGA method, and their ratios. 25
2. The case study networks showing the estimates of the mean times of the two methods, the mean ratio of times and the 95% confidence intervals. 26
3. The times, $t_{RCTM}(s)$ and $t_{GGA}(s)$, for each of the 15 repetitions of the RCTM and GGA methods applied to network N_1 and the ratios t_{GGA}/t_{RCTM} of the times. 26
<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-14</td>
<td>T. Aiki, A. Muntean</td>
<td>Large-time behavior of a two-scale semilinear reaction-diffusion system for concrete sulfatation</td>
<td>May ’13</td>
</tr>
<tr>
<td>13-16</td>
<td>B.S. van Lith, C. Storm, A. Muntean</td>
<td>A multiscale model for self-assembly with secondary nucleation-like properties</td>
<td>June ’13</td>
</tr>
<tr>
<td>13-17</td>
<td>U. Sharma, R. Duits</td>
<td>Left-invariant evolutions of wavelet transforms on the similitude group</td>
<td>June ’13</td>
</tr>
</tbody>
</table>