Straining-mode dependent collagen remodeling in engineered heart valve tissue
Rubbens, M.P.; Driessen - Mol, A.; van Marion, M.H.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

Published: 01/01/2008

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 21. Dec. 2018
Introduction
Tissue engineered heart valves often lack sufficient amounts of functionally organized collagen fibers and consequently do not meet in vivo mechanical demands. To improve collagen remodeling, and hence mechanical properties, the effects of two modes of mechanical conditioning, being either static or dynamic, were quantified for several indices of collagen remodeling.

Material and methods
Rectangular strips (35x5x1 mm) of PGA/P4HB were seeded with human venous myofibroblasts and constrained at the outer ends (static strain). The effect of uniaxial dynamic straining (4%, 1Hz) (fig. A) was investigated on 1) the secretion of collagen remodeling markers for synthesis and degradation, differences in 2) collagen and 3) cross-links on gene expression and protein levels and 4) tissue mechanical properties.

Results
1) Dynamic conditioning enhanced both collagen synthesis and degradation compared to static conditioning (fig. 1).

2) Dynamic conditioning downregulated collagen mRNA expression and collagen content (fig. 2), but 3) enhanced both cross-link mRNA expression and content (fig. 3).

4) Dynamic conditioning for 4 weeks increased cross-link densities, correlated to higher moduli. No difference in the amount of collagen was found (fig. 4).

Conclusions
• Gene expression results correspond to protein data.
• Compared to static conditioning, dynamic conditioning resulted in:
 1) higher collagen remodeling activities, 2) lower collagen expression and content, but 3) enhanced collagen cross-link expression and density, correlated to 4) improved mechanical properties.
• Straining-mode dependent remodeling responses can be used to balance collagen and cross-link production and, thus, to fine-tune tissue mechanical properties via mechanical conditioning protocols.