Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus
van Dam, E.A.; Dams, S.D.; Peters, G.W.M.; Rutten, M.C.M.; Schurink, G.W.H.; Buth, J.; van de Vosse, F.N.

Published: 01/01/2006

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Non-linear Viscoelastic Behavior of Abdominal Aortic Aneurysm Thrombus

EA van Dam¹, SD Dams¹, GWM Peters², MCM Rutten¹, GWH Schurink³, J Buth¹ and FN van de Vosse¹

¹ Department of Biomedical Engineering, TU/e, ² Department of Mechanical Engineering, TU/e, ³ Academic Hospital Maastricht, ⁴ Catharina Hospital Eindhoven

Introduction

Abdominal Aortic Aneurysm (AAA) wall stresses, which might be an important indicator for rupture risk, can be studied using a patient specific stress analysis model of the aneurysm [1]. It had been suggested that intraluminal thrombus decreases the maximal peak stresses that occur. An ideal model for calculating wall stresses would include loading with a dynamic pressure and applying a proper constitutive model that also incorporates the viscoelastic properties of the thrombus.

The objective of this work was to determine the linear and non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus and to study the changes in mechanical properties throughout the thickness of the thrombus.

Materials & Methods

Stacks of slices are gathered from the thickest part of thrombus of 7 patients (Fig. 1). Linear viscoelastic data from oscillatory shear experiments with a strain of 3% and frequencies of 0.1-10 rad/s were performed. Variations in G' and G'' were studied within and between thrombi.

To study the non-linear regime, stress relaxation experiments with strains up to 20% are performed (Fig. 2a). To describe the phenomena observed experimentally, a non-linear multi mode model was used (Fig. 2b). The elements of the viscoelastic modes, G_1 through G_n were chosen to be linear, whereas a nonlinear equilibrium mode G_0 was used.

Results

Linear viscoelastic data from oscillatory shear experiments show that the change of properties throughout the thrombus is different for each thrombus (Fig. 3a). Furthermore the variations found within one thrombus are of the same order of magnitude as the variation between patients (Fig 3b). The parameters for the model proposed were obtained by fitting this model successfully to the experimental results in both the linear and non-linear regime (Fig. 4).

Discussion & Conclusion

The model can not only describe the average stress response for all thrombus samples but also the highest and lowest stress responses. These may play an important role in rupture risk prediction using finite element stress analyses.

References: