Coherent absorption and enhanced photoluminescence in thin layers of nanorods

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.85.165455

Published: 01/01/2012

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 01. Nov. 2018
Coherent absorption and enhanced photoluminescence in thin layers of nanorods

FOM Institute for Atomic and Molecular Physics AMOLF, c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE, Eindhoven, The Netherlands

Physics and Chemistry of Nanostructures, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium

COBRA Research Institute, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 27 January 2012; published 30 April 2012)

We demonstrate a large light absorptance (80%) in a nanometric layer of quantum dots in rods (QRs) with a thickness of 23 nm. This behavior is explained in terms of the coherent absorption by interference of the light incident at a certain angle onto the very thin QR layer. We exploit this coherent light absorption to enhance the photoluminescent emission from the QRs. Up to a seven- and fivefold enhancement of the photoluminescence is observed for p- and s-polarized incident light, respectively.

DOI: 10.1103/PhysRevB.85.165455

I. INTRODUCTION

With the development of nanotechnologies it has become possible to scale down the dimensions of electro-optical devices. For certain applications, e.g., in photovoltaics and photodetection, it has become crucial to find new methods to enhance the optical absorption in ultrathin layers of different materials. Consequently, enhanced optical absorption by nanostructures and metamaterials has been intensively investigated in recent years. The concept of Coherent Perfect Absorption (CPA) has been recently introduced. In particular, it has been shown that is possible to trap a narrow window of wavelengths of counterpropagating beams inside a thick slab of a given material through the realization of interference. CPA is, thus, described as a combination of interference and dissipation.

In this article we exploit the CPA concept by making use of the Attenuated Total Reflectance (ATR) technique. Our structure consists of an ultrathin layer of absorbing material, with a thickness of 23 nm. We choose colloidal quantum dots in rods (QRs) as the constituent material of the layer. Quantum dots are a class of materials with characteristic optical properties, such as the tunability of their emission spectrum and their high quantum efficiency if their surface is well passivated. We have designed the sample and the experiment such that an efficient conversion of incident light into photoluminescence is achieved by means of enhanced absorption. In particular, we demonstrate a significant enhancement of the absorbance of the incident light at $\lambda = 457$ nm onto the layer (80% for s-polarized light and 70% for p-polarized light) at a certain angle of incidence, which leads to a seven- and fivefold enhancement of the QR photoluminescence for p- and s-polarized excitation, respectively.

ATR is an extended technique used to couple plane waves to evanescent modes in which a prism is used to enable this coupling. A typical ATR measurement is characterized by a minimum in the specular reflectance at an angle of incidence larger than the critical angle for total internal reflection at the prism-structure interface. An interpretation for the ATR resonance, based on quantum interference, has been provided. When the momentum-matching condition between the incident wave and the evanescent mode is realized an additional photon path, besides the radiative scattering, opens. The relation between this interpretation and the CPA is provided by the interference nature of the two phenomena. In the ATR experiment, the interference is due to the superposition of the probability amplitudes of two events: the photon scattered out because of the total internal reflection, and the same photon coupled first into an evanescent mode and coupled out into radiation. In the resonant condition the radiative damping of the evanescent mode equals the internal damping due to losses in the material, and all the light is absorbed. The quantum interpretation can be rephrased classically in terms of interference of electromagnetic waves, in which the first photon path corresponds to the reflected wave at the prism-structure interface and the second one to the leaky wave associated with the evanescent mode. This classical interpretation is similar to the so-called critical coupling by which it is possible to perfectly transfer energy between two optical media. Similarly to ATR, in the critical coupling theory there is also a relation between the internal and the out-coupling losses, namely, when they are equal it is possible to absorb 100% of the incident light. CPA ATR and critical coupling are phenomena characterized by a general scheme, i.e., in all of them optical interference and dissipation lead to an efficient electromagnetic energy transfer into a structure and an enhanced absorption. In our experiments the structure to which we want to transfer the energy is the QR layer.

II. SAMPLE PREPARATION AND CHARACTERIZATION

We have used CdSe/CdS quantum dots-in-rods as the constituents of the nanometric layer. The QRs have been synthesized following the procedure described in Ref. 18. They have an average length of 36 nm and an average diameter of 4 nm. The absorbance and normalized emission spectra of as-grown CdSe/CdS nanorods in suspension in toluene are shown in Fig. 1(a). The large ratio between the absorbance at $\lambda = 460$ and $\lambda = 611$ nm limits the self-absorption. The quantum efficiencies of the QRs suspended in toluene and forming a layer in air have been determined to be 70% and 40%, respectively. The reduction of photoluminescence quantum efficiency of the rods in the layer is explained by the increased probability for energy transfer between adjacent rods. In particular, an exciton in a close-packed QR layer has a higher probability to end up in a nonemitting rod, which leads...
to a decrease of the quantum efficiency of the ensemble of nanorods.

Since our goal is to exploit the CPA principle in the ATR configuration, we have fabricated a sample with the structure schematically represented in Fig. 1(b). A suspension of quantum dots-in-rods in toluene is spin-coated on top of a silica substrate with a refractive index of 1.45. After baking of quantum dots-in-rods in toluene is spin-coated on top of a silica matching layer, the thickness and refractive index of this layer are critical to achieve coherent absorption in the QR layer. The optical constants and the thicknesses of the QR and matching layers have been determined with spectroscopic ellipsometry. Figure 2(b) displays ellipsometry measurements of the real, n (black curve), and imaginary, k (gray curve), components of the refractive index of the QR layer. Two peaks are visible at $\lambda = 460$ and 600 nm in the curve of the imaginary component of the refractive index. These peaks correspond to absorption due to resonant excitation of excitons in CdS and CdSe, respectively.

An F2 Schott glass prism, with refractive index 1.62 at $\lambda = 600$ nm, on top of the sample is used in the ATR configuration. In order to obtain a good optical contact between the prism and the matching layer and to avoid multiple reflections that will destroy the interference in the QR layer, we have used a refractive-index-matching liquid with the same refractive index as F2.

III. REFLECTION AND ABSORPTION MEASUREMENTS

The ATR measurements were performed as follows: The prism was illuminated with a collimated s- or p-polarized beam from a halogen lamp, varying the angle of incidence, θ. The detector was placed at the angle of specular reflection. The specular reflection was measured in steps of $\theta = 0.1^{\circ}$ by rotating the sample and a multimode optical fiber coupled to a spectrometer with a computer-controlled rotation stage. In order to obtain the specular reflectance (R) of the QR layer, the reflection measurements were normalized by the reflection from an angle above the critical angle for total internal reflection at the prism-matching layer interface, i.e., an angle at which the reflectance is 1. For angles larger than the critical angle the transmission through the sample was negligible.

In Fig. 3 we display the measured (a) and the calculated (b) specular reflectance (color scale) for s-polarized light as a function of the angle of incidence and the wavelength. The calculation has been performed using the transfer matrix method for a multilayer structure. In these calculations we have fixed the thickness and refractive index of the QR and matching layer as derived from the ellipsometry measurements. Therefore, we do not use any free parameter to fit the measurements. Figures 3(c) and 3(d) display cuts of the reflectance measurements (open circles) and calculations (solid curves) at $\lambda = 611$ and $\lambda = 457$ nm, respectively. These wavelengths correspond to the wavelength of maximum emission of the QRs and to the wavelength used to excite the QRs in the photoluminescence experiments shown in the next section. The strong increase in the reflectance for angles larger than $\theta \simeq 64^{\circ}$ is due to the total internal reflection at the prism-matching layer interface above the critical angle ($\theta_c = 64.5^{\circ}$ for $\lambda = 700$ nm). The pronounced dip in reflectance around $\theta = 65.5^{\circ}$ and $\lambda = 450$ nm is due to the coherent absorption. The excellent agreement between measurements and calculations confirms the validity of the transfer matrix method to describe the light scattering in the multilayer structure. This remarkable result, in view of the inhomogeneities in the QR layer [see Fig. 1(b)], can be explained from the fact that ellipsometric measurements include the effect of the roughness as an effective property of the layer.

For angles larger than the critical angle we estimate the experimental absorptance in the QR layer as $1 - R$, assuming that the transmittance through the sample in this angular range is negligible. Figure 4(a) displays with open circles the s- (black circles) and p-polarized (gray circles) absorptance for $\theta > \theta_c$ at $\lambda = 457$ nm. The dotted vertical line in this figure indicates the critical angle. The maximum in absorptance reaches the extraordinarily large value of 80% at $\theta = 65.5^{\circ}$ and 70% at $\theta = 64.2^{\circ}$ for s- and p-polarized illumination, respectively. This is a remarkable result considering that absorption takes place only in the 23 nm-thick QR layer. The shift of the maximum in absorptance between s- and p-polarized light can be explained by the different phase shifts in the reflection at the interfaces for the two polarizations that

![Figure 1](image1.png)
FIG. 1. (Color online) (a) Absorbance (black curve) and normalized emission spectra (gray curve) of CdSe/CdS quantum dots in rods. (b) Schematic representation of the sample, i.e., F_2 glass prism, silica matching layer, QR layer, and quartz substrate.

![Figure 2](image2.png)
FIG. 2. (a) Tilted scanning electron microscope image of the top surface of the QR layer spin-coated over a quartz substrate. (b) Real (black curve) and imaginary (gray curve) components of the refractive index of the QR layer as a function of the wavelength.
modifies the interference condition for coherent absorption. We note that the absorption length, i.e., the length over which the intensity decreases by a factor 1/e under plane-wave illumination, at \(\lambda = 457 \text{ nm} \) in a thick layer of a material with the refractive index of the QR layer is on the order of 350 nm for both polarizations. Therefore, coherent absorption in the QR layer leads to a reduction of the absorption length by more than one order of magnitude.

In Fig. 4(b), we plot the calculated absorptance at \(\lambda = 457 \text{ nm} \) for \(s \)-polarization (gray curve) and \(p \)-polarization (black curve) using optimized values for the thicknesses of the matching layer to achieve perfect absorptance at a certain angle. This thickness corresponds to 480 nm for \(p \)-polarization and 230 nm for \(s \)-polarization. The difference in the two optimum thicknesses is due to the different amplitudes and phases of the fields reflected at each interface of the multilayer structure for \(p \) and \(s \) polarization. This difference makes it impossible to achieve 100% absorption for unpolarized light in a single sample. Nevertheless, the sample used in our experiments, with a matching layer of 350 nm, exhibits a significant enhancement of the absorption for both polarizations. We note from the measurements of Figs. 4(a) and 4(b) that with the nonoptimum thickness of the matching layer we are not truly fulfilling the condition for critical coupling. The maximum absorptance equals 80% which indicates a 20% radiation loss in the experiment.

The interference mechanism leading to the coherent absorption in the QR layer can be appreciated by calculating the field intensity in the multilayer structure. This calculation is displayed in Fig. 5 for \(s \)-polarized incident light with a wavelength of 457 nm at four different angles, namely, \(\theta = 62^\circ \) (a), 64.2° (b), 65.4° (c) and 66.5° (d). The color scale in these figures represents the spatial distribution of the field intensity normalized by the incident intensity. The absorbed electromagnetic power in a medium is given by \(\int_V \omega \epsilon'' |\mathbf{E}|^2 dV \), where \(\omega \) is the angular frequency of the wave, \(\epsilon'' \) is the imaginary component of the permittivity of the medium and \(\mathbf{E} \) is the total electric field where the overbar indicates the time average over a period. In our system the only absorbing material with \(\epsilon'' \neq 0 \) is the QR layer and the integral needs to be evaluated in the volume occupied by this layer. At \(\theta = 62^\circ \) [Fig. 5(a)] the field intensity in the
QR layer is low. Therefore, for this angle of incidence also
the absorbance in the QR layer is low. At 64.2° [Fig. 5(b)]
the angle of incidence approaches the angle for coherent
absorption. Consequently, the field intensity in the QR layer
is higher. The normalized field intensity is also high at the
prism-matching layer interface due to total internal reflection.
This situation changes drastically at 65.4° [Fig. 5(c)], where
the coherent absorption condition is reached. For this angle
of incidence the fields interfere constructively in the QR
layer where the intensity increases. This field enhancement
in the layer leads also to the enhancement of the absorbed
power in the otherwise weakly absorbing QRs. For this angle
of incidence, we observe a reduction of the intensity at all
locations other than the QR layer. This reduction is the result
of the concomitant destructive interference required by the
conservation of energy. At θ = 66.5° the absorbance is low
[Fig. 5(d)]. For this angle the normalized field intensity in
the QR layer is also low, while at the prism-matching layer
interface it is maximum due to total internal reflection.

A description of the mechanism leading to coherent absorp-
tion in our system, related to the aforementioned description
of ATR, considers the coupling of the incident radiation into
the quasibounded fundamental mode supported by a lossy
waveguide. The waveguide is defined by the QR layer with
an effective index of refraction larger than the surrounding
media and the losses are given by absorption in the layer and
through radiation into the prism. To illustrate this explanation,
we have calculated the eigenfrequencies associated with the
fundamental transverse electric field eigenmode (TE0 mode)
of a waveguide with a thickness of 23 nm and a permittivity
equal to the effective permittivity of the QR layer obtained
from ellipsometry. The effect of the roughness was taken into
account in these calculations since the imaginary component
of the effective refractive index, obtained from ellipsometry,
includes a reduction in the intensity of the specular reflection
due to both absorption and scattering in the QR layer. The
eigenfrequencies are represented as a function of the wave
number of the mode in the dispersion diagram shown in Fig. 6
with the solid line. In these calculations, we consider the
layer embedded in a homogenous dielectric, i.e., we do not
consider the prism. Despite this approximation there is a good
agreement with the measured data represented by the open
circles in Fig. 5. These measurements have been obtained from
the attenuated total reflectance data (Fig. 3) by determining
the wavelengths and angles of minimum reflectance and
representing them as functions of the frequency \(\nu = c / \lambda \)
and the in-plane wave vector \(k_{||} = \frac{2 \pi}{\lambda} \sin(\theta) \). The minimum in
the reflectance measurements of Fig. 3(d) can be described as the
result of destructive interference between the leakage radiation
of the TE0 mode through the prism and the specular reflection
of the incident beam at the prism-matching layer interface.

IV. PHOTOLUMINESCENCE

Coherent absorption can be exploited to enhance the
photoluminescence from the QR layer. The inset of Fig. 6(a)
shows a schematic representation of the experimental con-
figuration used in the photoluminescence experiments. The
angle of incidence θ is varied in these measurements, while
the direction of detection, defined by the angle α between
the normal to the layer and the detector, is kept fixed at

![Fig. 6. (Color online) Dispersion relation of the TE0 mode in
a homogenous layer with a thickness of 23 nm and a permittivity
given in Fig. 2(b) (red line). Open circles are the experimental data
extracted from the measurements of Fig. 3(a).](image-url)
The QR layer was excited with a $\lambda = 457$ nm laser and incident power of 1.6 mW, using both s and p polarization. The emission was collected without polarization selection. From the reflection measurements of Fig. 3(a), we can conclude that the sample does not exhibit any resonance above 600 nm. The QR photoluminescence at these wavelengths follows a Lambertian curve as a function of the emission angle. This Lambertian emission was confirmed in angular-dependent emission experiments (not shown here). In Fig. 7 are shown the spectra taken for different values of the angle of incidence θ and polarizations. Black curves correspond to s-polarized and gray curves to p-polarized incidence. Figure 7(a) shows the photoluminescence intensity for $\theta = 62^\circ$, i.e., for an illumination angle below the critical angle. Figures 7(b) and 7(c) correspond to the angles of illumination at which maximum absorption at $\lambda = 457$ nm is achieved in the QR layer for p and s polarization, respectively, i.e., $\theta = 64.2^\circ$ and 65.4°. An increased emission is achieved at the angles of incidence at which coherent absorption is observed. Figure 7(d) shows the photoluminescence emission due to evanescent excitation of the QR layer at $\theta = 66.5^\circ$.

To directly correlate the absorptance to the photoluminescence enhancement, we have plotted in Figs. 8(a) and 8(b) the absorptance at $\lambda = 457$ nm (solid curves) and the photoluminescence intensity integrated from 550 nm to 670 nm (squares), as a function of the angle of incidence for s- and p-incident polarization, respectively. The dashed vertical lines correspond to the angles of Figs. 7(a)–7(d). As expected, the enhancement of photoluminescence is directly related to the enhancement of the absorption at the excitation wavelength of the QRs. It is possible to evaluate an enhancement factor of the photoluminescence by dividing the value of the integrated intensity at the angle of maximum emission by the intensity at an angle lower than the angle of total internal reflection. Enhancement factors of 4.6 and 6.8 at $\lambda = 457$ nm are obtained for s and p polarization, respectively.

V. CONCLUSIONS

We have demonstrated experimentally an absorptance up to 80% for s-polarized light and 70% for p-polarized light at $\lambda = 457$ nm in a 23 nm-thick layer of quantum dots-in-rods. This extraordinary absorption is explained in terms of coherent absorption: The incident light is trapped in the layer due to the constructive interference of the fields scattered at different interfaces. The enhanced absorption is efficiently converted into photoluminescence from the QR layer. We have obtained a sevenfold enhancement of the QR emission for p-polarized incident light and a fivefold emission enhancement for s-polarized incident light as a result of the coherent absorption in the layer. This enhancement can be further increased by optimizing the interference in the multilayer structure. Enhanced optical absorption in nanometric layers is relevant for applications in various fields such as photovoltaics and sensitive photodetection.

ACKNOWLEDGMENTS

This work was supported by the Netherlands Foundation Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Nanonext consortium and is part of an industrial partnership program between Philips and FOM. This research has also received funding from the European Community’s Seventh Framework Program under Grant Agreement No. 214954. G. L. thanks NanonextNL for funding his post-doctoral contract.

G. L. thanks NanoNextNL for funding his post-doctoral contract.
1. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
2. H. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).