Micromechanics of particle-modified semi-crystalline materials
van Dommelen, J.A.W.; Brekelmans, W.A.M.; Baaijens, F.P.T.

Published: 01/01/2001

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
Micromechanics of particle-modified semi-crystalline materials

J.A.W. van Dommelen, W.A.M. Brekelmans and F.P.T. Baaijens
Dutch Polymer Institute, Eindhoven University of Technology, Department of Mechanical Engineering

Introduction

The toughness of semi-crystalline materials can be significantly improved by the addition of second phase particles. A multi-scale numerical model is developed to investigate the role of the microstructure on the macroscopic behavior.

Methods

A distinction between three different scales is made. The constitutive properties of the material are characterized at the microscopic scale. At this scale, the individual crystallographic lamellae and amorphous layers are identified.

<table>
<thead>
<tr>
<th>Microscopic level (constitutive level)</th>
<th>Mesoscopic level (aggregate level)</th>
<th>Macroscopic level (toughening level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite inclusion model</td>
<td>Finite Element Modeling</td>
<td></td>
</tr>
<tr>
<td>crystalline phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amorphous phase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Different length-scales in particle-modified material.

At the mesoscopic scale, an aggregate of individual phases is formed. To bridge to this scale, a layered two-phase composite inclusion (CI) model [1] is formulated. The inclusion-averaged fields are related to the fields of the aggregate by a hybrid interaction law.

Results

Unfilled HDPE

In unfilled material, a preferred orientation with parallel lamellae, with the normals in the loading direction, is found to prevent the occurrence of localization.

Figure 3 Preferred orientation with different loading angles.

Filled material

Anisotropic Hill model

The use of a Hill-type plasticity model shows that a surface-induced anisotropy ($R_{12} = R_{13} = 1/5$) can potentially effectively suppress localization in particle-modified systems, as can only be represented by an irregular RVE [2], and has a distinct influence on the triaxial stress state, which is described by an axisymmetric RVE with a regular (BCT) stacking [3].

Figure 4 Irregular plane strain ($\bar{\varepsilon}_p^{\text{eq}}$) and axisymmetric ($\bar{p} / \tau_0$) RVEs with isotropic and anisotropic (Hill) material.

Composite inclusion model: HDPE

A surface-induced orientation causes a somewhat more dispersed occurrence of plastic deformation. Moreover, the local anisotropy leads to a reduction of the triaxial stress state.

Figure 5 Irregular plane strain ($\bar{\varepsilon}_p^{\text{eq}}$) and axisymmetric ($\bar{p} / \tau_0$) RVEs with the CI model with random and surface-induced orientations.

Conclusions

- Changing the microstructure can prevent the occurrence of localization in unfilled HDPE.
- The irregular and 3D nature of particle-modified systems requires the use of both irregular plane strain and regular axisymmetric RVEs.
- A surface-induced anisotropy has a small influence on the plastic deformation and the triaxial stress state.

References: