Improving the opening behaviour of food cans

Boers, S.H.A.; Schreurs, P.J.G.; van der Aa, H.C.E.; Geers, M.G.D.

Published: 01/01/2002

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 02. Jan. 2019
Improving the opening behaviour of food cans
an experimental and numerical study

S.H.A. Boers, P.J.G. Schreurs, H.C.E. van der Aa, M.G.D. Geers
Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
In recent years, food cans with a completely removable lid made of steel have become very popular.

The deformation mechanisms and formation of damage is critically observed because all experiments are done under the objective field of a microscope.

Numerical simulations
An elasto-plastic plane strain analysis is performed with a gradient enhanced damage formulation. A damage variable \(\omega_p (0 \leq \omega_p \leq 1) \) is introduced into the yield function:

\[
 f(\sigma, \varepsilon_p, \omega_p) = \sigma_{eq} - (1 - \omega_p)[\sigma_y(\sigma_{eq}, \varepsilon_p) \leq 0
 \]

To avoid mesh-dependency, the value for \(\omega_p \) is a function of a non-local variable. In this study it is related to the non-local effective plastic strain \(\varepsilon_p \). To obtain \(\varepsilon_p \) from the field of \(\varepsilon_p \):

\[
 \varepsilon_p = \frac{1}{l_m \omega_m} \nabla \cdot \varepsilon_p = \varepsilon_p
 \]

B.C.: \(\nabla \cdot \varepsilon_p \cdot \bar{n} = 0 \)

in which \(l_m \) represents an intrinsic length scale of the material and is based on the size of plastic zones during the deformation process.

Conclusions
- Opening forces can be reduced considerably when the formation of damage during the groove forming process is controlled by combining different material properties, groove geometries and depths;
- The numerical analyses are capable of simulating very large deformation grades up to \(\varepsilon_p \) of 4. However, more research is needed to obtain more realistic analyses;
- The use of friction appears to be very important during the numerical simulations;
- More research must be done to relate local strain fields to the formation of damage;
- In the future, it will be possible to simulate the forming of a complete can lid from sheet metal. An appropriate load can be applied to obtain the mode-1 and mode-3 performance.