A novel tool to determine nucleus density in colored system with NA

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A novel tool to determine nucleus density in colored system with NA

Z. Ma, R.J.A. Steenbakkers, J.W. Housmans, G.W.M. Peters, H.E.H. Meijer
Polymer Technology Group, Department of Mechanical Engineering, TU/e

Introduction
Adding nucleating agent (NA) into a crystallizable polymer system is a common way, applied in polymer industry, to control crystallization and tailor mechanical and optical properties of products. These properties are closely related to the resulting nucleus density. For colored NA systems, nucleus density becomes too large and subsequently changes the optical properties, which will both make quantification of nucleus density difficult with optical microscopy. The aim of this project is to develop a new method to determine the nucleus density for colored NA systems with rheometry.

Materials and Experiments
An isotactic polypropylene (Borealis HD120MO, Mw = 365 kg/mol, PDI = 5.4) was compounded with the organic NA (U-Phthalocyanine, bulk density = 310 kg/mol) at a concentration of 0.2 wt%, by which the system was colored blue.

A Rheometrics ARES rheometer was used with a plate-plate geometry for small-amplitude oscillatory measurements at an angular frequency of 5 rad/s and a strain of 0.5%.

Method
1) Obtain raw data from rheological measurements.

2) Derive space filling from dynamic moduli.
A linear viscoelastic version of the three dimensional generalized self-consistent method (3D GS CM) of Christensen and Lo[1] was used. This model has been validated by experimental data in our previous work[2]. If spherulites are formed, the relative dynamic modulus, \(f^* G = G^* / G^*_{0} \), is obtained from

\[
A^* f^* + B^* f^* + C^* = 0
\]

with \(G^* \) the effective dynamic modulus and \(G^*_{0} \) the dynamic modulus of the continuous phase. The complex coefficients \(A^* \), \(B^* \) and \(C^* \) depend on space filling \(\phi \), \(\mu^* = G^* / G^*_{0} \), which is the ratio of the complex moduli of the continuous phase \((G^*_{0}) \) and dispersed phase \((G^*_{1}) \), and \(\nu_0 \) and \(\nu_1 \), being the Poisson ratios of both phases.

In this case, space filling is unknown and is obtained from the measured \(f^* G \) by minimizing eq. (1). Results obtained by fitting are shown in Fig. 2.

3) Use space filling to determine nucleus density.
Kinetics of space filling at different temperatures depend on both nucleus density and growth rate. Growth rate is a known exponential function of temperature[3],

\[
G(T) = G^*_{ref} \exp \left[-c_{G}(T - T^*_{T^*_{ref}})^2 \right]
\]

where for HD120MO, parameters \(G^*_{ref} \), \(c_{G} \), \(T^*_{T^*_{ref}} \) are \(3*10^{-6} \) m/s, \(2.3*10^{-3} \) and \(363 \) K, respectively. And then, nucleus density could be obtained using Avrami equation[4]:

\[
N(T) = \frac{-\ln(1 - \phi)}{4\pi G(T)\phi^3}
\]

Conclusion
A suspension-based rheological method to determine the nucleus density is applied to colored NA filled systems, where optical microscopy is not possible. Nucleus densities of this system and pure iPP, crystallizing at various temperatures, determined by this method are shown in Fig. 3.

References