Influence of network density on the strain hardening of PMMA copolymers

Published: 01/01/2005

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Influence of network density on the strain hardening of PMMA copolymers

Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
The intrinsic toughness of glassy polymers depends on the post-yield behavior, on strain softening and strain hardening. Dependent on the loading condition, the macroscopic response to deformation might be brittle, e.g. for poly(methyl methacrylate) (PMMA) and polystyrene (PS) (Fig. 1). Polycarbonate (PC) is ductile, since it necks in tensile testing. Commercial PMMA always contains some copolymer to reduce unzipping and facilitate processing, e.g. ethyl acrylate (EA). Network density and strain hardening can be influenced by addition of EA.

Materials and methods
PMMA-co-PEA containing 0.5 to 25 wt % EA was provided by Arkema. Dynamic mechanical thermal analysis (DMTA) was used to determine the network density. Uniaxial compression was performed at various temperatures to yield the strain hardening modulus.

Results
By DMTA (Fig. 2), the network density can be calculated from the rubbery modulus G_N^s by $\nu_c = N_A G_N^s / RT$ where R is the molar gas constant, T is the absolute temperature, and N_A is the Avogadro number. The network density decreases upon addition of EA, see Table 1.

Conclusions
Increasing the EA content in PMMA increases the chain mobility and thereby reduces the network density and strain hardening modulus. All copolymers seem to behave identically at a certain temperature below T_g, since a universal master curve can be constructed. For optimal toughness, the EA content should be low, since high network density and strain hardening are essential for stable deformation.

References:

Table 1: Properties of PMMA-co-PEA copolymers

<table>
<thead>
<tr>
<th>M_a [kg/mol]</th>
<th>PDI</th>
<th>T_g [°C]</th>
<th>ν_c [10^{-9}]</th>
<th>G_R (20°C) [MPa]</th>
<th>E_R (T - T_g) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC</td>
<td>SEC</td>
<td>DMTA</td>
<td>DMTA</td>
<td>compr.</td>
<td>compr.</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>EA 0.5</td>
<td>42.5</td>
<td>2.07</td>
<td>132.1</td>
<td>0.85</td>
<td>44</td>
</tr>
<tr>
<td>EA 5</td>
<td>38.5</td>
<td>2.18</td>
<td>121.8</td>
<td>0.83</td>
<td>39</td>
</tr>
<tr>
<td>EA 15</td>
<td>58.9</td>
<td>2.33</td>
<td>102.7</td>
<td>0.81</td>
<td>31</td>
</tr>
<tr>
<td>EA 25</td>
<td>52.3</td>
<td>3.34</td>
<td>86.1</td>
<td>0.79</td>
<td>21</td>
</tr>
</tbody>
</table>

Uniaxial compression tests at room temperature show that G_R decreases with increasing EA content, see Fig. 3 and Table 1. Fig. 4a shows that G_R decreases with temperature for all 4 copolymers investigated. The thermal mobility of the chains is dependent on the distance in temperature below T_g. Shifting the G_R curves onto a $(T - T_g)$ - axis results into a master curve (Fig. 4b).

Fig. 1: The deformation behavior of PS, PMMA, and PC in a) tension can be predicted from the intrinsic properties as measured in b) compression. All tests are performed at $\dot{\varepsilon} = 10^{-2}$ s^{-1}.

Fig. 2): DMTA results; a) dynamic modulus E and b) tan δ as a function of temperature. T_g and network density increase with decreasing copolymer content.

Fig. 3): Compressive behavior of PMMA-co-PEA at room temperature at $\dot{\varepsilon} = 10^{-2}$ s^{-1}.

Fig. 4): Strain hardening as a function of a) temperature and b) shifted temperature $(T - T_g)$.

/department of mechanical engineering