LET’S CREATE IT

Multicore for 4G: 3GPP versus ETSI

MPSoc 2011, Beaune, July 6

Kees van Berkel

professor @ TU/e

fellow @ ST ERICSSON
Mobile internet: cost in US$/GB

Mobile internet is fueled by a steady decrease in cost per GB: $0.1x /5 years, ...
Cellular downlink [Mbit/sec]

3.3 Gb/s peak DL rate (LTE-A Rel 10)

DL bit rate

10x / 5 year

1990 2000 2010 2020

GSM GPRS UMTS LTE HSPA+

3GPP = 3rd Generation Partnership Project
technical specifications: GSM, EDGE, 3G, LTE, ...

... and by a matching steady increase in (peak) downlink data rate of 10x / 5 years, ...
CMOS feature size [nm]

... enabled by a steady decrease in (CMOS) feature size of “only” 0.5x / 5 years, ...

ITRS = International Technology Roadmap for Semiconductors
≈ industry consensus
versus

![Graph showing the decrease in node size from 1970 to 2020. The graph compares Intel node data with ITRS 2010 predictions, showing a trend towards smaller node sizes over time.]
Can ITRS keep up with 3GPP?

- constrained by:
 - battery capacity [Wh] (only 20%/5 years)
 - a thermal limit of 3W for handsets

node [Intel]
ITRS 2010
0.5x/5y

GSM
GPRS
UMTS
LTE-A
HSPA+
LTE
nm

Can ITRS keep up with 3GPP?
Plan: “GMAC[16b]/200mJ” (= GMAC/s/200mW)

Focus on “Multiply–ACumulate” (MAC) part of baseband processing
Assume power budget of 200 mW for “MAC part”
Quantify:
• available GMAC/200mJ [16b] for “ITRS year”
• required MAC/b (16b–MAC/received bit) for “3GPP year”
⇒ required GMAC/s for high-end data rate for “3GPP year”

Robert H. Dennard [1974]:
\[L \propto \alpha, \quad V \propto \alpha \] (“constant field”)
\[C \propto \alpha, \quad I \propto \alpha \] (constant I/\mu)
⇒ delay = \(CV/I \propto \alpha \)
⇒ energy = \(CV^2 \propto \alpha^3 \)

With Dennard scaling: /5 year
\[\text{CMOS} \quad \alpha \quad 0.5 \]
⇒ Energy \(\alpha^3 \) \quad 0.125
⇒ GMAC/J \(\alpha^{-3} \) \quad 8×
3GPP bit rate \quad 10×

... the outlook seems promising!
Dennard scaling? Does “V \propto L”? No! Feature size/voltage: we have lost an order of magnitude! ... and the gap is widening
GMAC[16b]/200mJoule

However, Dennard scaling lasted only 1 decade: 1991 – 2002
Baseband (simplified): MAC/bit

- “MAC part”: mostly complex numbers, 2×16: FIRs, IIRs, FFTs, correlators, $M \times V, M \times M, M^{-1}$, data selection, ...
- WCDMA: a rake receiver also uses “1×16” complex MAC (additions)
- total: $100 \leftrightarrow 300$ MAC/bit (simple \leftrightarrow advanced algorithms)
- trend: towards more advanced algorithms, to mitigate interference
3GPP versus ITRS: an increasing GMAC gap

- 2010 – 2020: modem power up 13x (more with heavier algorithms!)
Closing the gap 1: increase power budget

- Power of MAC part will increase 13× in the current decade:
- Unlikely for smart phones, but
- Some increase likely for tablets

Larger surface area of tablets:
- More room for batteries
- Larger area to emit heat
- More room for antennas
Closing the gap 2: peak rate for bursts only

- keep average bit rate @ constant power of 200mW
- allow peak rate for bursts only (throttling the DL stream)
- period << thermal time constant handset
- period < user response time (content dependent)

- This results in a decreasing duty cycle of the baseband processing.
- Bonus: fewer DSP resources needed.
- This requires a standardized protocol with the base stations.
Closing the gap 3: optimize algorithms

Equivalent algorithms may require fewer MACs/bit, e.g.

- Fast FIR
- frequency-domain filtering
- ...

... but unlikely to provide 13×

Simpler algorithms for high bit rates: *(scalable algorithms, adaptation):*

- high bitrates only feasible when channel is “clean”;
- .. allowing for simpler algorithms that require fewer MAC/bit.

That is, high MAC/bit algorithms only when channel is challenging.
Closing the gap 4: more parallelism at low V_{dd}

1. scale V_{dd} with $\sqrt{\text{load increase}}$ to keep dynamic power constant
2. calculate f_{clock} slow down
3. compensate lower f_{clock} by increase in parallelism
4. calculate area & watch in horror!

MPSoC 2011 -- Beaune, 2011, July 6 -- Kees van Berkel
Closing the gap 5: optimize HW architecture

Conflict:

- multi-standard, multi-channel push: HW → SW
- to close the power gap push: SW → HW

- Efficiency of DSPs [GMAC/J] is improving relative to HW SIMD, SIMD width, complex number support, special instructions, historically a few % per year, likely to continue.
- share of load on DSP to decrease over time?
- DSP flexibility often overkill; more tailored flexibility needed
- (how to quantify flexibility, versatility ...?)
#accumulators, area

- **power, without discussed measures**

MPSoC 2011 -- Beaune, 2011, July 6 -- Kees van Berkel
versus : conclusion

In the decade 2010–2020:

• the cellular peak downlink data rates will increase 100x
 (the associated baseband workload may grow even more)

• whereas CMOS feature size will decrease by only 4x
 and, as a result, MAC/200mJ will increase by only 8x

To close this 13x gap between available and required GMAC/200mJ, we need to:

1. allow for a somewhat higher power budget for modems in tablets,
2. restrict peak rates to a controlled duty cycle,
3. optimize baseband algorithms & adapt them to channel conditions,
4. operate at a (slightly) lower Vdd by using more parallelism (?),
5. optimize the hardware: by (less?) usage of more efficient vector DSPs.
Bibliography

1) 3GPP, http://en.wikipedia.org/wiki/3gpp,
2) LTE–Advanced, http://www.3gpp.org/LTE–Advanced
3) S. Sesia et al, LTE – The UMTS Long Term Evolution, from Theory to Practice, Wiley 2009
REV–090003r1 IMT–Advanced Evaluation Workshop, 2009, Beijing
4) Ghosh et al, LTE–Advanced: Next Generation Wireless Broadband Technology, IEEE
Wireless Communications, June 2010
6) Hiroshi Iwai, “Technology Roadmap for 22nm and Beyond”, 2009 2nd Intl. Workshop on
Electron Devices and Semiconductor Technology
7) Kwangok Jeong and Andrew B. Kahng, “A Power–Constrained MPU Roadmap for the
International Technology Roadmap for Semiconductors (ITRS)”, ISOCC 2009, pp. 49–52
8) R. Dennard, et al., “Design of ion–implanted MOSFETs with very small physical
9) Kees van Berkel, et al, Vector Processing as an Enabler for Software–Defined Radio in
2613–2625
10) J. Berkmann et al, On 3G LTE Terminal Implementation – Standard, Algorithms,
Complexities and Challenges, IEEE Journal ... 2008,
11) G. Gammie et al, A 28nm 0.6V Low–Power DSP for Mobile Applications, ISSCC 2011, p. 7.5
12) Kees van Berkel, Multi–Core for Mobile Phones, DATE’09, April 2009, Nice (invited paper)
LET’S CREATE IT

THANK YOU