Controlling the selectivity of chromium-based ethylene oligomerisation and polymerisation catalysts

Citation for published version (APA):

Document status and date:
Published: 01/01/2011

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Aug. 2019
Metal-catalysed ROP of macrolactones to unprecedentedly high molecular weight polyesters.

R. Duchateau, A. Heise, I. Van der Meulen, E. Gubbels.

Laboratory of Polymer Chemistry - Eindhoven University of Technology (NL)

Catalytic ring-opening polymerisation (cROP) of cyclic esters is widely used for the synthesis of aliphatic polyesters. It is commonly agreed that the driving force behind the cROP of lactones is the release of ring-strain in the transition from the cyclic ester to the polyester chain. It is therefore not surprising that only a few examples of metal-catalysed ROP of macrolactones like pentadecalactone can be found in the literature, which report only low molecular weights (up to $M_n = 30$ kg/mol). It is thus commonly accepted that efficient polymerisation of macrolactones is only possible by enzymatic catalysis.

In this contribution we discuss the successful metal-catalysed ROP of various macrolactones to high molecular weight polyesters ($M_n > 200,000$ g/mol) were obtained. These results are unprecedented in the literature, they challenge the common theory of ring-tension driven cROP and they open doors to new (functional) materials, which were not available before.

(1) Lebedev, B.; Yevstropov, A. Makromolekulare Chemie 1984, 185, 1235.