Systematic analysis of the impact of mixing locality on Mixing-DAC linearity for multicarrier GSM

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.

Download date: 29. Jan. 2019
Systematic analysis of the impact of mixing locality on Mixing-DAC linearity for multicarrier GSM

Elbert Bechthum*, Georgi Radulov*, J. Briaire†, Govert Geelen†, Arthur van Roermund*
*Eindhoven University of Technology, Department of Electrical Engineering, The Netherlands, Email: E.Bechthum@tue.nl
†NXP Semiconductors, Eindhoven, The Netherlands

Abstract—In an RF transmitter, the function of the mixer and the DAC can be combined in a single block: the Mixing-DAC. For the generation of multicarrier GSM signals in a basestation, high dynamic linearity is required, i.e. SFDR>85dBc, at high output signal frequency, i.e. \(f_{\text{out}} \approx 4 \)GHz. This represents a challenge which cannot be addressed efficiently by current available hardware or state-of-the-art published solutions.

Mixing locality indicates if the mixing operation is executed locally in each DAC unit cell or globally on the combined DAC output signal. The mixing locality is identified as one of the most important aspects of the Mixing-DAC architecture with respect to linearity. Simulations of a current steering Mixing-DAC show that local mixing with a local output cascode can result in the highest linearity, i.e. IMD3<88dBc at \(f_{\text{out}}=4 \)GHz.

I. INTRODUCTION

A popular transmitter architecture is the zero-/low-IF transmitter. A functional overview of such a transmitter is shown in Fig. 1(a).

Because of the constant improvement of CMOS process technology, the possibility to combine the function of the Mixer and the DAC has come within range [1]. A transmitter signal chain with this novel Mixing-DAC is shown in Fig. 1(b). Possible advantages of the Mixing-DAC over the classical approach due to the integration of both functions in one chip are: less noise, higher signal frequency, lower power consumption, lower cost. Moreover, various new architectures are available for implementing the combined DAC and mixer function, compared to just combining a DAC and a mixer.

An overview of the SFDR of recent Mixing-DAC publications and relevant DACs and Mixers (at 1Vpp output voltage) is given in Fig. 2. A possible application area for the Mixing-DAC is the generation of multicarrier GSM signals in basestations. For this specific application, the Mixing-DAC is required to have high spectral purity and linearity [2], i.e. IMD<85dB, up to an output frequency of approximately 4GHz. The bandwidth of the multicarrier GSM signal is limited to approximately 200MHz. Fig. 2 clearly shows that none of the current solutions can achieve this target. Above \(f_{\text{out}}=200 \)MHz, the highest linearity values are only achieved in a reduced bandwidth, e.g. [1], [3], using exotic technologies, e.g. GaAs [4], or at low output power, e.g. [5].

II. MIXING LOCALITY: GLOBAL AND LOCAL MIXING

Numerous Mixing-DAC linearity limitations exist. Simulations have shown that the mixing locality has a major impact on the linearity. Two main options for mixing locality are distinguished: global mixing and local mixing. In section III simulation results are used to illustrate the trade-off between the two mixer locality options.

This paper analyzes various Mixing-DAC architectures with a strong emphasis on high linearity at high frequencies, i.e. IMD<85dB at \(f_{\text{out}}>4 \)GHz. Section II discusses the importance of mixing locality for the linearity of a Mixing-DAC architecture and discusses two mixing locality options: ‘global mixing’ and ‘local mixing’. In section III simulation results are used to illustrate the trade-off between the two mixer locality options.

Fig. 1. Conventional transmitter signal chain (a) and new transmitter signal chain with Mixing-DAC (b)

Fig. 2. Overview of the (reduced bandwidth) SFDR of state-of-the-art Mixing-DAC publications, DACs and mixers (at 1Vpp output signal amplitude)
III. ANALYSIS AND SIMULATIONS

For the analysis of the two mixing locality options, a specific implementation is assumed, without loss of generality: a 65nm 1.2V/3.3V CMOS process with thin-oxide and thick-oxide transistors.

Since high linearity DACs are usually implemented as Current Steering (CS) DACs, the Mixing-DAC under investigation is chosen to be a CS Mixing-DAC. The simplified schematics of a CS Mixing-DAC with global mixing and local mixing are shown in Fig. 4(a) and Fig. 4(b) respectively.

Table I summarizes the most important error sources of the CS Mixing-DAC which lead to non-linearity. The following subsections systematically analyze each error source separately, using the corresponding identification number in table I and Fig. 4. Unless otherwise indicated, simulations use the following simulation setup. The load resistors (R_L) are 25Ω (50Ω double terminated) each and the maximum output current is 20mA, generating a differential output-signal amplitude of 1Vpp. The input signal is a two-tone full scale signal at $f_{in1}=150$MHz and $f_{in2}=165$MHz. Together with a mixing signal frequency (f_{LO}) of 4.02GHz, the resulting output signal frequencies (f_{out}) are 4.17GHz and 4.19GHz. In the simulations, the IMD3 of the output signal is used as a measure for the linearity.

A. Output effects

For isolating the Mixing-DAC non-linear output effects in simulation, the simulation setup of Fig. 5(a) is used. An ideal mixing-DAC output signal is generated by I_{out} and R_L, while M_1 and M_2 model the output non-linearity of a Mixing-DAC. A sweep over the output common mode voltage ($V_{out,dc}$) for various values of the output signal frequency (f_{out}) is used to show the effect of the output non-linearities, see Fig. 5. This simulation clearly shows that an IMD3 of -85dBc at 4GHz is achievable with CMOS output transistors.

The most limiting output effects are: gate-drain capacitance and drain-bulk leakage (error sources 1 and 2 in Table I and Fig. 4). These two effects mainly depend on $V_{out,dc}$, f_{out} and output signal voltage swing.

B. Specific global mixing non-linearities

In the global mixing simulation model, only transistors M_4 to M_7 of Fig. 4(a) are real transistors. The other parts of the Mixing-DAC are implemented in Verilog-A.

Global mixing suffers from non-linearity errors due to the data-dependent current through the mixing transistors (error source 3). Global mixing can be linearized by optimizing the...
Fig. 5. Output effect simulation: circuit (a) and simulation results (b)

generating non-linearity (error source 4). The results of a Monte Carlo (MC) mismatch simulation are shown in Fig. 7. In this simulation the transition time of the LO waveform is 50ps and R_L is chosen very small (0.25Ω) to isolate the mismatch non-linearity. The simulated standard deviation of the timing errors is approximately 0.8ps. In the corresponding IMD3 distribution, 99% of all IMD3 results is better than -93dBc. Therefore, it is concluded that the LO timing errors do not degrade the dynamic linearity of the CS Mixing-DAC below the required IMD3=-85dBc. The timing errors due to imperfect signal routing are assumed to be negligible and hence are not taken into account.

Fig. 6. With global mixing, the mixing operation linearity depends on the added bias current

C. Specific local mixing non-linearities

In the simulation model of the local Mixing-DAC, only transistors M_4 to M_7 of Fig. 4(b) are real transistors, the other Mixing-DAC parts are implemented using Verilog-A. The current through a mixer transistor pair (e.g. M_4-M_5) exhibits a large step if the input code of the corresponding data transistor (e.g. M_2) changes. This generates a large voltage step at the mixer common source node V_{cs}. Settling behavior of the V_{cs} step is dependent on the output voltage (error source 5), introducing a error charge on the parasitic capacitance C_{cs}. By optimizing I_{bleed}, this error source can be minimized.

Threshold voltage mismatch of the mixing transistors causes timing errors in the mixing operation between current cells,
Fig. 8. Sensitivity of mixing linearity to capacitance at the mixer common-source node. Output cascode reduces sensitivity for local mixing.

of a local Mixing-DAC with output cascode. Careful biasing ensures all transistors do not exceed their maximum operating conditions. The new IMD3 dependence on mixer common source node capacitance is simulated using a simulation model where only M_4-M_9 are real transistors, the results are shown in Fig. 8. It can be seen that the simulated performance is increased to IMD3=-92dBc.

![Diagram](link-to-diagram)

Fig. 9. Local CS Mixing-DAC with local output cascode

Using a simulation model where all Mixing-DAC current cell transistors (M_0-M_9) are real transistors and assuming realistic wiring capacitances, the IMD3 is -88dBc, achieving the desired linearity.

For global mixing, adding additional isolation between the output and the mixer common-source node does not improve the linearity, since the C_{cs} dependent non-linearity is in global mixing due to the data dependent current through the mixer. Fig. 8 confirms this claim.

IV. CONCLUSION

For high linearity Mixing-DACs, mixing locality is a major concern. For a current steering Mixing-DAC, the impact of the capacitance at the mixer common-source node (C_{cs}) dominates the Intermodulation Distortion (IMD) performance. For global mixing, this error source cannot be prevented. For local mixing, the IMD degradation due to C_{cs} originates from coupling from the mixer common-source node to the output voltage. Implementing a local output cascode reduces the sensitivity to C_{cs}. The expected IMD3 performance of the exemplary local mixing CS Mixing-DAC is <-88dBc at $F_{RF}>4$GHz output frequency, enabling the advantages of a Mixing-DAC for multicarrier GSM applications.

REFERENCES

[2] Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (GSM 05.05 version 8.5.1 Release 1999), ETSI.

