Measurement of frictional coefficients in cartilaginous tissues and its substitutes

Citation for published version (APA):

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Measurement of frictional coefficients in cartilaginous tissues and its substitutes

R.W. Roos, C.F. Janssens, J.M. Huyghe, F.P.T. Baaijens
Eindhoven University of Technology, Department of Biomedical Engineering

Introduction
At the scale of cell-mechanics, absorption- and electric forces become dominant over pressure [1]. Therefore, a thorough understanding of electro-osmotic and electrophoretic processes in charged porous media is needed. The purpose of this study is to measure the frictional coefficients, which quantify these phenomena macroscopically in a hydrogel.

Analyses
Permeability and ion diffusion-convection in incompressible electro-chemo-mechanics is described by the following constitutive equations for the velocities v^γ of constituents γ: [2]

$$-C^\beta \nabla \mu^\beta = \sum_{\gamma=f,+,-} B^{\beta \gamma} (v^\gamma - v^\beta), \quad \beta = f,+,-$$

(1)

in which C^β is the molecular concentration of phase β, μ^β its molecular electro-chemical potential and $B^{\beta \gamma}$ is a symmetric matrix of frictional coefficients. The other frictional coefficients are related to the constants in the electro-kinetic relationships:

$$j = -L^p \nabla p - L^e \nabla \xi,$$

(2)

$$i = -L^e \nabla p - L^e \nabla \xi,$$

(3)

where j is the volume-flow, i is the electric current, Δp is the pressure gradient and $\Delta \xi$ is the gradient of the electric field.

Aim of this research
We want to estimate the coefficients of the symmetric B matrix by measuring the constants in the electro-kinetic relationships (2), (3).

Experiments
In figure 1 a schematic representation of the experimental setup is given [3]. There is no concentration gradient across the sample. Figure 2 depicts a photo of the measurement apparatus.

Electro-osmotic flow experiment
The pressure gradient between both sides of the sample is kept equal to zero. We estimate L^{pe} and L^p, by measuring j, i and $\Delta \xi$.

Electro-osmotic pressure experiment
The fluid flow through the sample is kept equal to zero. We estimate L^{pe} and L^e, by measuring $i, \Delta \xi$ and Δp.

References:

Acknowledgement
This research is supported by the technology foundation STW, applied science division of NWO, and the technology programs of the Ministry of Economics.