Interaction between cracking and delamination in the failure of thin films
Bosch, van den, M.J.; Onraet, S.; Geers, M.G.D.; Vellinga, W.P.

Published: 01/01/2002

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 29. Dec. 2018
Interaction between cracking and delamination in the failure of thin films

Eindhoven University of Technology, Department of Mechanical Engineering

Introduction

Hard, brittle coatings may exhibit three deformation mechanisms, cracking, delamination and buckling, in response to residual or applied stresses. The interaction between these mechanisms and the inherent statistical nature of the coating strength leads to interesting scaling behaviour as well as interesting pattern formation, such as spiral cracks and telephone chord buckles. In order to advance our understanding of this pathological behaviour that we have encountered in practice we have engaged in a numerical study.

Method

The FEM model consists of a substrate, interface and coating (figure 1). All layers are built with linear elastic spring elements. Cracking and delamination are modelled by removing elements whenever an element's elongation reaches a critical value \(\varepsilon_i = \varepsilon_0 \pm \Delta \varepsilon_i \). Where \(\Delta \varepsilon_i \) is chosen from an uniform distribution, representing statistical disorder. Below we present some typical results.

Cracking and delamination

A correlation length \(\xi = \left(\frac{G_i}{h_i \varepsilon_0 (h_c/3 E_c + h_s/3 E_s)} \right)^{1/2} \) can be defined, here \(E \) is the stiffness and \(h \) the height of the substrate (s), interface (i) and coating (c). The mean segment length, during cracking, is normalized by \(\xi \) and plotted against the normalized strain \(\varepsilon_n = \frac{\varepsilon}{\varepsilon_0} \), see figure 2.

Delamination and buckling

In experiments cracks initiate prior to buckling. Between those cracks delaminated parts will buckle and grow as triangles until they reach another triangles or cracks (figure 5).

Conclusion

We have developed a simple model that allows us to study the interplay of residual stress, simple external loading, elastic material properties, disorder and geometry on interacting failure modes of a substrate-interface-coating assembly.