Measuring the electron density in an Extreme Ultra-Violet generated plasma
van der Horst, R.M.; Nijdam, S.; Kroesen, G.M.W.

Published: 01/01/2013

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):
Measuring the electron density in an Extreme Ultra-Violet generated plasma

R.M. van der Horst, S. Nijdam and G.M.W. Kroesen

Introduction

Industries are continuously striving to reduce the size of computer chips in order to meet the demand of increasing computer speed and memory capacity. One way to miniaturize the chips is by reducing the wavelength used in lithography machines by using Extreme Ultra-Violet (EUV, 92 eV) light. Background gas in the lithography machine is partially ionized by the absorption of EUV photons. The study of this small low-density (10^{15} m$^{-3}$) pulsed plasma is experimentally challenging.

Goal

Determine the temporally resolved electron density in an EUV generated plasma.

EUV plasma parameters

- Short (sub-μs) EUV pulse
- EUV transparent gasses (e.g. H$_2$ and He)
- Pressures < 1Pa
- Low electron density (10^{15} m$^{-3}$)
- A DC discharge is used as a simulation plasma to test the diagnostics

Microwave scattering

- Oscillating dipole moment in plasma due to MW [1]
- Scattered power has maximum @ f_p
- As a first test: determine impedance of the test plasma [2]
 - Dip in reflectivity @ f_p a\textsubscript{c} = 0
 - Peak in impedance @ f_p
 - Neither are observed

Conclusion and Outlook

- No plasma effects visible in plasma scattering measurements
- Improve set-up to suppress non-plasma related effects
- MCRS proved to be able to measure 10^{14} m$^{-3}$ in a small plasma
- Characterize EUV cavity
- Measure electron density in EUV generated plasma

Acknowledgements

The authors would like to thank Lex van Deursen for his help with the impedance measurements.

Microwave cavity resonance spectroscopy

Measurement principle and set-up

![Microwave cavity resonance spectroscopy diagram]

Results of DC discharge in DC cavity

- Accuracy of frequency shift: 100 kHz
- Detection limit: $n_e = 10^{17}$ m$^{-3}$
- Shift observed due to plasma
- Lower response

<table>
<thead>
<tr>
<th>pressure</th>
<th>voltage</th>
<th>density</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Pa</td>
<td>2 kV</td>
<td>1.8 x 10^{17} m$^{-3}$</td>
</tr>
<tr>
<td>50 Pa</td>
<td>3 kV</td>
<td>2.2 x 10^{17} m$^{-3}$</td>
</tr>
<tr>
<td>50 Pa</td>
<td>4 kV</td>
<td>2.3 x 10^{17} m$^{-3}$</td>
</tr>
<tr>
<td>100 Pa</td>
<td>3 kV</td>
<td>5.8 x 10^{16} m$^{-3}$</td>
</tr>
</tbody>
</table>

Preliminary spectrum EUV cavity

- Accuracy of frequency shift: <20 kHz
- Detection limit: $n_e < 3 \times 10^{13}$ m$^{-3}$
- Response time: 15 ns
- Resonance frequencies correspond to theoretical values

<table>
<thead>
<tr>
<th>Mode</th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM010</td>
<td>3.477 GHz</td>
<td>3.482 GHz</td>
</tr>
<tr>
<td>TM110</td>
<td>5.54 GHz</td>
<td>5.49 GHz</td>
</tr>
</tbody>
</table>

References