Parameter identification for a DM model of the active behavior of the rats tibialis anterior

Citation for published version (APA):

Document status and date:
Published: 01/01/1999

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Aug. 2019
Parameter identification for a DM model of the active behavior of the rats tibialis anterior

Mascha Maenhout1,2, Maarten Drost2, Cees Oomens1, Jan Janssen1, Harm Kuipers2

1 Dept. of Computational and Experimental Mechanics, Eindhoven University of Technology, and 2 Dept. of Movement Sciences, Maastricht University, The Netherlands

Introduction

To study the influence of mechanical load on muscle tissue a continuum model of the tibialis anterior (TA) of the rat is developed by Gielen [1]. The contractile properties in this model are described by a distribution-moment (DM) model [2]. The objective of the present research is to identify the unknown DM parameters for the rats TA. Because model simulations will be compared to macroscopic behavior we used a simplified 1D model.

Methods

Distribution-Moment Model

The contractile property of muscle tissue is described by a two-state Huxley cross-bridge model including the calcium activation dynamics [2]. The equation reads

\[\frac{dn}{dt} = \frac{\partial n}{\partial t} - u(t) \frac{\partial n}{\partial \xi} = r f(\xi)[n - g(\xi)n] \]

where n is the fraction attached cross-bridges with scaled length ξ, $u(t)$ is the scaled shortening velocity of a half sarcomere and r and n are respectively the activation and the overlap factor. $f(\xi)$ and $g(\xi)$ represent respectively the attachment and detachment rate parameters defined as

\[f(\xi) = \begin{cases} 0 & \xi \leq 0 \\ f_1 \xi & ; g(\xi) = \begin{cases} g_2 & -\infty < \xi < 0 \\ g_1 \xi & 0 < \xi < 1 \\ g_1 \xi + g_3 (\xi - 1) & 1 < \xi < \infty \end{cases} \end{cases} \]

Since we are interested in the contractile behavior at regional level it suffices to approximate the solution of the Huxley equation by the DM model. An additional advantage of this approach is that the moments $Q_\lambda = \int_{-\infty}^{\infty} \xi^\lambda n(\xi, t) d\xi$, have a physical meaning. The first moment Q_1, for example is proportional to the isometric muscle torque.

Parameter Identification

The rate constants f_1, g_1, g_2 and g_3 and two parameters associated with calcium activation, ρ and τ_0 are unknown for the TA of a rat. Identification of these parameters requires experimental data of macroscopic muscle behavior.

Experiment

Experimental data were obtained by inducing isometric contractions by $320ms$ electrical stimulation of the TA at different stimulation frequencies, during which the muscle torque T was measured using a isometric rat dynamometer.

Results

The DM parameters values that appeared to give the best fit to the measured isometric torques were determined interactively by trial-and-error.

<table>
<thead>
<tr>
<th>f_1</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>ρ</th>
<th>τ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$60s^{-1}$</td>
<td>$50s^{-1}$</td>
<td>$300s^{-1}$</td>
<td>$20s^{-1}$</td>
<td>4</td>
<td>$0.01s$</td>
</tr>
</tbody>
</table>

Fig. 3 Measured (solid lines) and simulated (dashed lines) isometric torque as fraction of maximum isometric torque.

Discussion

The results in Fig. 3 indicate that the identified parameters of DM model enables reasonable description of the isometric muscle torques of the TA of the rat at different simulation frequencies. Because only one experiment was performed so far, the parameter values are a first approximation. In the near future more experimental data will be collected and automatic parameter estimation procedures will be used.

References