The solution for constitutive modelling of polymer melts?

Citation for published version (APA):

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Apr. 2021
The Solution for Constitutive Modelling of Polymer Melts?

Wilco Verbeeten, Gerrit Peters and Frank Baaijens
Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
The difficulty in constitutive modelling of polymer melts is to get a correct non-linear behaviour in both elongation and shear. The recently proposed Pom-Pom model [1], is a major step forward in solving this problem. In this work, an extension is proposed to improve the performance of the Pom-Pom model. Eventually, the objective is to calculate visco-elastic polymer melt flows in characteristic geometries under processing conditions.

The Pom-Pom model
The model is based on the schematic configuration of figure 1.

Fig. 1: Schematic Pom-Pom ‘molecule’.

Original differential decoupled equations [1, 2]:
\[\nabla A + \frac{1}{\lambda} [A - \frac{1}{\lambda} I] = 0, \quad S = \frac{\Lambda}{\lambda} \]
\[\Rightarrow \dot{S} + [D : S] S + \frac{1}{\lambda_{\alpha}} [3 \alpha \Lambda S : S \\
+ (1 - \alpha - 3 \alpha \Lambda I_{s,s}) S - \frac{(1 - \alpha)}{3} I] = 0 \]

\[\dot{S} = \Lambda [D : S] - \frac{1}{\lambda} (\Lambda - 1) \forall \Lambda \leq q \]

\[\tau = G_0 \left(3 \Lambda^2 S - I \right) \]

with \(\lambda = \lambda_{\alpha} e^{-\nu(\Lambda-1)} \), \(\nu = \frac{2}{7} \).

Limitations of original differential Pom-Pom model:
- Unbounded orientation for \(\dot{\varepsilon}_{\alpha 0} > 1 \).
- Non-smooth elongational viscosity due to maximum stretch condition.
- \(\Psi_2 = 0 \).

The eXtended Pom-Pom (XPP) model resolves these limitations, by eliminating the maximum stretch condition, and modifying the orientation and stretch:
\[\dot{S} + [D : S] S + \frac{1}{\lambda_{\alpha}} \left[3 \alpha \Lambda S : S \\
+ (1 - \alpha - 3 \alpha \Lambda I_{s,s}) S - \frac{(1 - \alpha)}{3} I \right] = 0, \]
\[\dot{\Lambda} = \Lambda [D : S] - \frac{1}{\lambda} (\Lambda - 1) \]

The XPP model can be written as a single equation:
\[\dot{\tau} + \lambda (\tau)^{-1} \cdot \tau = 2 G_0 D \]

with \(\lambda (\tau)^{-1} = \frac{1}{\lambda_{\alpha}} \left[\frac{\alpha}{\alpha - 1} \tau + f(\tau)^{-1} I + G_0 (f(\tau)^{-1} - 1) \right] \),
\[\frac{1}{\lambda_{\alpha}} f(\tau)^{-1} = \frac{1}{\lambda_{\alpha}} (1 - \frac{1}{\alpha}) + \frac{1}{\lambda_{\alpha}} \left(\frac{\alpha f}{3 \alpha^2} - \frac{\alpha f}{3 \alpha^2} \right) \]

and \(\Lambda = \sqrt{1 + \frac{1}{\lambda_{\alpha}} \cdot \frac{\alpha f}{3 \alpha^2}} \).

The Performance
A 4 modes XPP model is used for predicting data of an LDPE (DSM, Stamylan LD 2008 XC43) melt.

Uniaxial Elongation
The non-linear parameters, \(q \) and \(\frac{\lambda_{\alpha}}{\lambda_{\alpha}} \), are fitted on uniaxial elongational data [3] only.

Simple Shear
Without changing the parameters, the correct behaviour for shear data [4] is predicted.

Complex Flow
A complex flow with combined shear/elongation regions, the cross slot flow, is investigated.

Conclusions
- Excellent quantitative agreement in both elongation and shear.
- Smooth results, by eliminating maximum stretch condition.
- Fitting of non-linear parameters \(q \) and \(\frac{\lambda_{\alpha}}{\lambda_{\alpha}} \) on uniaxial experimental data only.
- Good quantitative performance in complex flow.

References:

PO Box 513, 5600 MB Eindhoven, the Netherlands