Revised budget allocations for fixed-priority-scheduled periodic resources

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Revised budget allocations for fixed-priority-scheduled periodic resources

Martijn M.H.P. van den heuvel, Pieter J.L. Cuijpers, Johan J. Lukkien, Nathan Fisher

ISSN 0926-4515

All rights reserved

editors: prof.dr. P.M.E. De Bra
 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&Sort=Author&level=1
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&Sort=Year&Level=1

Computer Science Reports 12-03
Eindhoven, February 2012
Revised budget allocations for fixed-priority-scheduled periodic resources

Martijn M. H. P. van den Heuvel · Pieter J. L. Cuijpers · Johan J. Lukkien · Nathan Fisher

Received: date / Accepted: February 21, 2012

1 Introduction

Hierarchical scheduling frameworks (HSFs) facilitate a decoupling of development of individual components from their integration on a shared uniprocessor platform. The periodic resource models of Shin and Lee (2008) and Easwaran et al (2007), characterizing periodic resource allocations to components, are complemented with novel methods to abstract timing requirements in the hierarchy of schedulers. HSFs provide temporal isolation between components by allocating a guaranteed resource share, i.e. a budget, to each component.

Dewan and Fisher (2010a) claim a unique, fully polynomial approximation scheme (FPTAS) to calculate a budget for a given task set and resource period. The special case where the approximation parameter \(k = \infty \) should yield an exact budget, which is computed more efficiently than the exhaustive search proposed by Shin and Lee (2008). We show that Dewan and Fisher (2010a) may yield optimistic budgets and we propose a correction for their algorithm.

2 System Model

We use the explicit-deadline periodic resource (EDP) model of Easwaran et al (2007) to specify guaranteed processor allocations to components. The timing interface of a component \(C \) is specified by a triple \((\Pi, \Theta, \Delta) \), where \(\Pi \in \mathbb{Z}^+ \) denotes its period, \(\Theta \in \mathbb{R}^+ \) its budget and \(\Delta \in \mathbb{R}^+ \) is the relative deadline.
of the EDP resource with $\Theta \leq \Delta \leq \Pi$. The periodic resource model Γ, proposed by Shin and Lee (2008), is a specialization of the EDP resource Ω with characteristics $\Gamma(\Pi, \Theta) = \Omega(\Pi, \Theta, \Pi)$.

A component C contains a set T of n sporadic tasks τ_1, \ldots, τ_n. Each task $\tau_i \in T$ is characterized by a triple (T_i, E_i, D_i), where $T_i \in \mathbb{R}^+$ denotes its minimum inter-arrival time, $E_i \in \mathbb{R}^+$ its worst-case computation time, and $D_i \in \mathbb{R}^+$ its relative deadline, where $0 < E_i \leq D_i \leq T_i$. We assume that tasks are given in priority order, i.e., τ_1 has the highest priority and τ_n the lowest.

The sufficient schedulability condition presented by Dewan and Fisher (2010a) deems a task set T schedulable on an EDP resource Ω, if

$$\forall 1 \leq i \leq n \exists t \in \tilde{S}_i(k) : \tilde{rbf}(i, t, k) \leq sbf_\Omega(t),$$

where the supply bound function $sbf_\Omega(t)$ computes the minimum processor supply for any interval of length t, i.e.

$$sbf_\Omega(t) = \max\left\{0, \left(h_\Omega(t) - 1\right)\Theta, t - \left(h_\Omega(t) + 1\right)\left(\Pi - \Theta\right) + \left(\Pi - \Delta\right)\right\},$$

with $h_\Omega(t) = \left\lceil\frac{t - (\Delta - \Theta)}{\Pi}\right\rceil$ and the cumulative requested processor time by task τ_i using approximation parameter k is:

$$\tilde{rbf}(i, t, k) \overset{\text{def}}{=} E_i + \sum_{1 \leq j < i} \delta(j, t, k)$$

and the ordered set of testing points is defined as

$$\tilde{S}_i(k) \overset{\text{def}}{=} \{t = b \cdot T_a \mid a = 1, \ldots, i - 1; \ b = 1, \ldots, k; \ t \in (0, D_i]\} \cup \{0, D_i\}.$$

For the special case where $k = \infty$, the schedulability condition in (1) specializes to the exact schedulability condition of Easwaran et al (2007).

Problem statement: Given a task set T, a period Π, a deadline Δ and parameter k, we want to determine the minimum budget Θ_{min} satisfying Equation (1).

3 Revisiting existing budget-allocation algorithms

We present a counter example, considering the optimism in the algorithm by Dewan and Fisher (2010a) for fixed-priority-scheduled components. For EDF-scheduled components, Fisher and Dewan (2009) presented a fundamentally different FPTAS compared to the FPTAS for fixed-priority scheduling reconsidered in this paper.

Counter example: Consider a fixed-priority-scheduled component C_1 with a period $\Pi_1 = \Delta_1 = 67$ and with two tasks $\tau_1 = (169, 1.5, 169)$ and $\tau_2 = (177, 34, 177)$. For this example, Dewan and Fisher (2010a) yield an optimistic budget of 18.5 time units. The required budget for component C_1 is,
Revised budget allocations for fixed-priority-scheduled periodic resources

However, 20.33 time units. Task τ_2 therefore violates (1), because $\forall t \in \tilde{S}_2(\infty) : \tilde{r}_b(2, t, \infty) > s_b(167, 18.5, 67)(t)$.

Since the algorithm by Dewan and Fisher (2010a) fails the exact schedulability test (for $k = \infty$) in (1), their budget allocations are optimistic. Fortunately, the source of optimism by Dewan and Fisher (2010a) can be found in their proofs (see the internal report by Dewan and Fisher (2010b)).

Lemma 12 of Dewan and Fisher (2010b) presents a budget candidate, $\Theta_{\min t}$, for each consecutive pair of values t_a and t_{a+1} in the testing set $\tilde{S}_i(k)$ of task τ_i. The definition of $\Theta_{\min t}$ is only valid for a specific domain of l_1 and l_2 values, i.e. $[1, \lceil l_2 \rceil - 1], [\lceil l_2 \rceil, \lceil l_1 \rceil], \text{ and } [\lceil l_1 \rceil + 1, \infty]$, and the values of l_1 and l_2 each reconstruct an $h(\alpha, t)$. Lemma 11 and the corollaries 1, 2 and 3 subsequently capture these three regions. Corollary 4 only calculates $\Theta_{\min t}$ at the boundaries of the regions defined by l_1 and l_2. However, Dewan and Fisher (2010b) have forgotten the remaining case in Corollary 4, i.e. $\lceil l_2 \rceil > \lceil l_1 \rceil$. This also leaves Lemma 12 incomplete.

Reconsidering the example: task τ_2 has a testing set of $\{0, 169, 177\}$ according to (4). This task requires two iterations: one considering interval $[0, 169]$ and one considering interval $[169, 177]$. For interval $[169, 177]$, the algorithm picks the smallest candidate from the following values: $\{20.33; 37; 37; 18.5\}$ which results in 18.5 time units. This value is finally promoted as the optimal budget for component C_1. Since in this iteration $\lceil l_2 \rceil > \lceil l_1 \rceil$, the last two budget candidates in the budget-candidate set correspond to an undefined interval. Both values should therefore be discarded, so that 20.33 is returned which coincides with the optimal solution found by an exhaustive search.

4 A revised FPTAS for budget allocations

Algorithm 1 presents a revised FPTAS to calculate budgets for fixed-priority-scheduled tasks on an EDP resource. The final proof of correctness of this algorithm depends on the correctness of $\Theta_{\min t}$ as defined by Dewan and Fisher (2010a) in Lemma 4 and Lemma 5. By including the missing case in the corollaries and lemmas and straightforwardly extending the proofs, we obtain an if-statement at the lines 11-17. As a result, $\Theta_{\lceil l_1 \rceil}$ and $\Theta_{\lceil l_2 \rceil}$ are only conditionally computed. Algorithm 1 (with $k = \infty$) can be used to obtain an exact budget for a given task set and resource period.
Algorithm 1 FPMinimumBudget(T, Π, Δ, k)

1: $\Theta_{\min} \leftarrow \Pi \cdot \sum_{T_i \in T} \frac{E_i}{T_i}$
2: for all $\tau_i \in T$ do
3: \[\Theta_{\min} \leftarrow \infty \]
4: for all $t_a, t_{a+1} \in \widehat{S}_i(k)$ do
5: $D_{t_a} \leftarrow \hat{rbf}(i, t_a, k) + \sum_{j < i \land t_a \mod T_a = 0} E_j$
6: $\Theta_{\min} \leftarrow \Theta_{\min} + \hat{rbf}(i, t_{a+1}, k)$
7: \[l_1 = \frac{(t_a + 1 - \Delta) + \sqrt{(t_a + 1 - \Delta)^2 + 4t_a D_{t_{a+1}}}}{2t_a} \]
8: \[l_2 = \frac{(t_a - \Delta) + \sqrt{(t_a - \Delta)^2 + 4t_a D_{t_a}}}{2t_a} \]
9: $\Theta_{[l_1+1]} \leftarrow \frac{D_{t_a + l_1 \cdot t_{a+1} + (l_1+1)(t_{a+1}) - t_a}}{t_{a+1}}$
10: $\Theta_{[l_2-1]} \leftarrow \frac{D_{t_a + l_2 \cdot t_{a+1} + (l_2)(t_{a+1}) - t_a}}{t_{a+1}}$
11: if $l_2 \leq l_1$ then
12: $\Theta_{[l_1]} \leftarrow \frac{D_{t_a + l_1 \cdot t_{a+1} + (l_1)(t_{a+1}) - t_a}}{t_{a+1}}$
13: $\Theta_{[l_2]} \leftarrow \frac{D_{t_a + l_2 \cdot t_{a+1} + (l_2)(t_{a+1}) - t_a}}{t_{a+1}}$
14: else
15: $\Theta_{[l_1]}, \Theta_{[l_2]} \leftarrow \infty$
16: end if
17: $\Theta_{\min} \leftarrow \min\{\Theta_{[l_1]}, \Theta_{[l_2]}, \Theta_{[l_1]}, \Theta_{[l_2]}\}$
18: $\Theta_{\min} \leftarrow \min(\Theta_{\min}, \Theta_{\min})$
19: $\Theta_{\min} \leftarrow \max(\Theta_{\min}, \Theta_{\min})$
20: end for
21: return Θ_{\min}
22: end for
23: References

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Peter Massuth, Natalia Sidorova and Jan Martijn van der Werf

09/02 P.J.J. Cuijpers, F.A.J. Koenders, M.G.P. Pustjens, B.A.G. Senders, P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Mousavi

09/05 Michael Franssen

09/06 Daniel Trivellato, Fred Spiessens, Nicola Zannone and Sandro Etalle

09/07 Marco Zapletal, Wil M.P. van der Aalst, Nick Russell, Philipp Liegl and Hannes Werther

09/08 Mike Holenderski, Reinder J. Bril and Johan J. Lukkien

09/09 Danilo Bosnački, Aad Mathijssen and Yaroslav S. Usenko

09/10 Ugur Keskin

09/11 Bas Ploeger

09/12 Wolfgang Boehmer, Christoph Brandt and Jan Friso Groote

09/13 Luca Aceto, Anna Ingolfsdottir, MohammadReza Mousavi and Michel A. Reniers

09/14 Maja Pešić, Danilo Bosnački and Wil M.P. van der Aalst

09/15 MohammadReza Mousavi and Emil Sekerinski, Editors

09/16 Muhammad Atif

09/17 Jeroen Keiren and Tim A.C. Willemse

09/18 Kees van Hee, Jan Hidders, Geert-Jan Houben, Jan Paredaens, Philippe Thiran

10/01 Ammar Osa'iwera, Marcel Boosten, MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/03</td>
<td>On Rule Formats for Zero and Unit Elements</td>
<td>Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, MohammadReza Mousavi and Michel A. Reniers</td>
</tr>
<tr>
<td>10/04</td>
<td>Towards Model-Based Testing of Electronic Funds Transfer Systems</td>
<td>Hamid Reza Asaadi, Rantin Khosravi, MohammadReza Mousavi, Neda Noroozi</td>
</tr>
<tr>
<td>10/05</td>
<td>Schedulability analysis of synchronization protocols based on overrun without payback for hierarchical scheduling frameworks revisited</td>
<td>Reinder J. Bri, Uğur Keskin, Moris Behnam, Thomas Nohte</td>
</tr>
<tr>
<td>10/06</td>
<td>Locally unique labeling of model elements for state-based model differences</td>
<td>Zvezdan Protić</td>
</tr>
<tr>
<td>10/07</td>
<td>Converting existing analysis to the EDP resource model</td>
<td>C.G.U. Okwudire and R.J. Bri</td>
</tr>
<tr>
<td>10/08</td>
<td>Reconstruction and verification of group membership protocols</td>
<td>Mohammed Atif, Sjoerd Cranen, MohammadReza Mousavi</td>
</tr>
<tr>
<td>10/09</td>
<td>A linear translation from LTL to the first-order modal μ-calculus</td>
<td>Sjoerd Cranen, Jan Friso Groote, Michel Reniers</td>
</tr>
<tr>
<td>10/10</td>
<td>Extending an Open-source Real-time Operating System with Hierarchical Scheduling</td>
<td>Mike Holenderski, Wim Cools, Reinder J. Bri, Johan J. Lukkien</td>
</tr>
<tr>
<td>10/11</td>
<td>1st Doctoral Symposium of the International Conference on Software Language Engineering (SLE)</td>
<td>Eric van Wyk and Steffen Zschaler</td>
</tr>
<tr>
<td>10/12</td>
<td>3rd International Software Language Engineering Conference</td>
<td>Pre-Proceedings</td>
</tr>
<tr>
<td>10/13</td>
<td>Discrimination Aware Decision Tree Learning</td>
<td>Faisal Kamiran, Toon Calders and Mykola Pechenizkiy</td>
</tr>
<tr>
<td>10/14</td>
<td>Specification Guidelines to avoid the State Space Explosion Problem</td>
<td>J.F. Groote, T.W.D.M. Kouters and A.A.H. Osaiweran</td>
</tr>
<tr>
<td>10/15</td>
<td>GEM: a Distributed Goal Evaluation Algorithm for Trust Management</td>
<td>Daniel Trivellato, Nicola Zannone and Sandro Etalle</td>
</tr>
<tr>
<td>10/17</td>
<td>Decompositional Reasoning about the History of Parallel Processes</td>
<td>L. Aceto, A. Birgisson, A. Ingolfsdottir, and M.R. Mousavi</td>
</tr>
<tr>
<td>10/18</td>
<td>Robustness of Behavioral Equivalence on Open Terms</td>
<td>P.D. Mosses, M.R. Mousavi and M.A. Reniers</td>
</tr>
<tr>
<td>10/19</td>
<td>Desynchronisability of (partial) closed loop systems</td>
<td>Harsh Beohar and Pieter Cuijpers</td>
</tr>
<tr>
<td>11/01</td>
<td>Refinement of Synchronizable Places with Multi-workflow Nets - Weak termination preserved!</td>
<td>Kees M. van Hee, Natalia Sidorova and Jan Martijn van der Werf</td>
</tr>
<tr>
<td>11/02</td>
<td>Using a DSL and Fine-grained Model Transformations to Explore the boundaries of Model Verification</td>
<td>M.F. van Amstel, M.G.J. van den Brand and L.J.P. Engelen</td>
</tr>
<tr>
<td>11/03</td>
<td>Reconciling Operational and Epistemic Approaches to the Formal Analysis of Crypto-Based Security Protocols</td>
<td>H.R. Mahrrooghi and M.R. Mousavi</td>
</tr>
<tr>
<td>11/05</td>
<td>Semantics, bisimulation and congruence results for a general stochastic process operator</td>
<td>Jan Friso Groote and Jan Lanik</td>
</tr>
<tr>
<td>11/06</td>
<td>Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence</td>
<td>P.J.L. Cuijpers</td>
</tr>
<tr>
<td>11/07</td>
<td>Transforming SOS Specifications to Linear Processes</td>
<td>F.P.M. Stappers, M.A. Reniers and S. Weber</td>
</tr>
<tr>
<td>11/08</td>
<td>A Component Framework where Port Compatibility Implies Weak Termination</td>
<td>Debiyoti Bera, Kees M. van Hee, Michiel van Oseh and Jan Martijn van der Werf</td>
</tr>
<tr>
<td>11/09</td>
<td>Model, analysis, and improvements for inter-vehicle communication using one-hop periodic broadcasting based on the 802.11p protocol</td>
<td>Tsesesuren Batsuuri, Reinder J. Bri and Johan Lukkien</td>
</tr>
<tr>
<td>Date</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>11/10</td>
<td>Neda Noroozi, Ramtin Khosravi, MohammadReza Mousavi and Tim A.C. Willemse</td>
<td>Synchronizing Asynchronous Conformance Testing</td>
</tr>
<tr>
<td>11/11</td>
<td>Jeroen J.A. Keiren and Michel A. Reniers</td>
<td>Type checking mCRL2</td>
</tr>
<tr>
<td>11/12</td>
<td>Muhammad Atif, MohammadReza Mousavi and Ammar Osaiweran</td>
<td>Formal Verification of Unreliable Failure Detectors in Partially Synchronous Systems</td>
</tr>
<tr>
<td>11/13</td>
<td>J.F. Groote, A.A.H. Osaiweran and J.H. Wesselius</td>
<td>Experience report on developing the Front-end Client unit under the control of formal methods</td>
</tr>
<tr>
<td>11/15</td>
<td>John Businge, Alexander Serebrenik and Mark van den Brand</td>
<td>Eclipse API Usage: The Good and The Bad</td>
</tr>
<tr>
<td>11/17</td>
<td>M.F. van Amstel, A. Serebrenik and M.G.J. van den Brand</td>
<td>Visualizing Traceability in Model Transformation Compositions</td>
</tr>
<tr>
<td>11/18</td>
<td>F.P.M. Stappers, M.A. Reniers, J.F. Groote and S. Weber</td>
<td>Dogfooding the Structural Operational Semantics of mCRL2</td>
</tr>
<tr>
<td>12/01</td>
<td>S. Cranen</td>
<td>Model checking the FlexRay startup phase</td>
</tr>
<tr>
<td>12/02</td>
<td>U. Khadim and P.J.L. Cuijpers</td>
<td>Appendix C / G of the paper: Repairing Time-Determinism in the Process Algebra for Hybrid Systems ACP</td>
</tr>
<tr>
<td>12/03</td>
<td>M.M.H.P. van den Heuvel, P.J.L. Cuijpers, J.J. Lukkien and N.W. Fisher</td>
<td>Revised budget allocations for fixed-priority-scheduled periodic resources</td>
</tr>
<tr>
<td>12/04</td>
<td>Ammar Osaiweran, Tom Fransen, Jan Friso Groote and Bart van Rijnsoever</td>
<td>Experience Report on Designing and Developing Control Components using Formal Methods</td>
</tr>
<tr>
<td>12/05</td>
<td>Sjoerd Cranen, Jeroen J.A. Keiren and Tim A.C. Willemse</td>
<td>A cure for stuttering parity games</td>
</tr>
<tr>
<td>12/06</td>
<td>A.P. van der Meer</td>
<td>CIF MSOS type system</td>
</tr>
</tbody>
</table>