Revised budget allocations for fixed-priority-scheduled periodic resources

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Revised budget allocations for fixed-priority-scheduled periodic resources

Martijn M.H.P. van den heuvel, Pieter J.L. Cuijpers, Johan J. Lukkien, Nathan Fisher

ISSN 0926-4515
All rights reserved
editors: prof.dr. P.M.E. De Bra
prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&Sort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&Sort=Year&Level=1

Computer Science Reports 12-03
Eindhoven, February 2012
Revised budget allocations for fixed-priority-scheduled periodic resources

Martijn M. H. P. van den Heuvel · Pieter J. L. Cuijpers · Johan J. Lukkien · Nathan Fisher

Received: date / Accepted: February 21, 2012

1 Introduction

Hierarchical scheduling frameworks (HSFs) facilitate a decoupling of development of individual components from their integration on a shared uniprocessor platform. The periodic resource models of Shin and Lee (2008) and Easwaran et al (2007), characterizing periodic resource allocations to components, are complemented with novel methods to abstract timing requirements in the hierarchy of schedulers. HSFs provide temporal isolation between components by allocating a guaranteed resource share, i.e. a budget, to each component.

Dewan and Fisher (2010a) claim a unique, fully polynomial approximation scheme (FPTAS) to calculate a budget for a given task set and resource period. The special case where the approximation parameter $k = \infty$ should yield an exact budget, which is computed more efficiently than the exhaustive search proposed by Shin and Lee (2008). We show that Dewan and Fisher (2010a) may yield optimistic budgets and we propose a correction for their algorithm.

2 System Model

We use the explicit-deadline periodic resource (EDP) model of Easwaran et al (2007) to specify guaranteed processor allocations to components. The timing interface of a component C is specified by a triple (Π, Θ, Δ), where $\Pi \in \mathbb{Z}^+$ denotes its period, $\Theta \in \mathbb{R}^+$ its budget and $\Delta \in \mathbb{R}^+$ is the relative deadline.
of the EDP resource with $\Theta \leq \Delta \leq \Pi$. The periodic resource model Γ, proposed by Shin and Lee (2008), is a specialization of the EDP resource Ω with characteristics $\Gamma(\Pi, \Theta) = \Omega(\Pi, \Theta, \Pi)$.

A component C contains a set T of n sporadic tasks τ_1, \ldots, τ_n. Each task $\tau_i \in T$ is characterized by a triple (T_i, E_i, D_i), where $T_i \in \mathbb{R}^+$ denotes its minimum inter-arrival time, $E_i \in \mathbb{R}^+$ its worst-case computation time, and $D_i \in \mathbb{R}^+$ its relative deadline, where $0 < E_i \leq D_i \leq T_i$. We assume that tasks are given in priority order, i.e. τ_1 has the highest priority and τ_n the lowest.

The sufficient schedulability condition presented by Dewan and Fisher (2010a) deems a task set T schedulable on an EDP resource Ω, if

$$\forall 1 \leq i \leq n \exists t \in \hat{S}_i(k) : \hat{rbf}(i, t, k) \leq \text{sbf}_{\Omega}(t),$$

(1)

where the supply bound function $\text{sbf}_{\Omega}(t)$ computes the minimum processor supply for any interval of length t, i.e.

$$\text{sbf}_{\Omega}(t) = \max \left\{ 0, \left(h(\Omega, t) - 1 \right) \Theta, t - (h(\Omega, t) + 1)(\Pi - \Theta) + (\Pi - \Delta) \right\} ,$$

(2)

with $h(\Omega, t) = \left\lceil \frac{t - (\Delta - \Theta)}{\Pi} \right\rceil$ and the cumulative requested processor time by task τ_i using approximation parameter k is:

$$\hat{rbf}(i, t, k) \overset{\text{def}}{=} E_i + \sum_{1 \leq j < i} \delta(j, t, k)$$

and $\delta(j, t, k)$ is defined as

$$\delta(j, t, k) \overset{\text{def}}{=} \begin{cases} E_j & \text{if } t \leq (k - 1)T_j \\ E_j + t \cdot E_j & \text{otherwise} \end{cases}$$

(3)

and the ordered set of testing points is defined as

$$\hat{S}_i(k) \overset{\text{def}}{=} \{ t = b \cdot T_a \mid a = 1, \ldots, i - 1; \ b = 1, \ldots, k; \ t \in (0, D_i] \} \cup \{0, D_i\} .$$

(4)

For the special case where $k = \infty$, the schedulability condition in (1) specializes to the exact schedulability condition of Easwaran et al (2007).

Problem statement: Given a task set T, a period Π, a deadline Δ and parameter k, we want to determine the minimum budget Θ_{min} satisfying Equation (1).

3 Revisiting existing budget-allocation algorithms

We present a counter example, considering the optimism in the algorithm by Dewan and Fisher (2010a) for fixed-priority-scheduled components. For EDF-scheduled components, Fisher and Dewan (2009) presented a fundamentally different FPTAS compared to the FPTAS for fixed-priority scheduling reconsidered in this paper.

Counter example: Consider a fixed-priority-scheduled component C_1 with a period $\Pi_1 = \Delta_1 = 67$ and with two tasks $\tau_1 = (169, 1.5, 169)$ and $\tau_2 = (177, 34, 177)$. For this example, Dewan and Fisher (2010a) yield an optimistic budget of 18.5 time units. The required budget for component C_1 is,
however, 20.33 time units. Task τ_2 therefore violates (1), because $\forall t \in \hat{S}_2(\infty) : rbf(2, t, \infty) > sbf_{[67, 18.5, 67]}(t)$.

Since the algorithm by Dewan and Fisher (2010a) fails the exact schedulability test (for $k = \infty$) in (1), their budget allocations are optimistic. Fortunately, the source of optimism by Dewan and Fisher (2010a) can be found in their proofs (see the internal report by Dewan and Fisher (2010b)).

Lemma 12 of Dewan and Fisher (2010b) presents a budget candidate, Θ_{\min}, for each consecutive pair of values t_a and t_{a+1} in the testing set $\hat{S}_i(k)$ of task τ_i. The definition of Θ_{\min} is only valid for a specific domain of l_1 and l_2 values, i.e. $[1, [l_2] - 1], [l_2]; [l_2], [l_1]$, and $[[l_1] + 1, \infty]$, and the values of l_1 and l_2 each reconstruct an $h_{(a,t)}$. Lemma 11 and the corollaries 1, 2 and 3 subsequently capture these three regions. Corollary 4 only calculates Θ_{\min} at the boundaries of the regions defined by l_1 and l_2. However, Dewan and Fisher (2010b) have forgotten the remaining case in Corollary 4, i.e. $[l_2] > [l_1]$. This also leaves Lemma 12 incomplete.

Reconsidering the example: task τ_2 has a testing set of $\{0, 169, 177\}$ according to (4). This task requires two iterations: one considering interval $[0, 169]$ and one considering interval $[169, 177]$. For interval $[169, 177]$, the algorithm picks the smallest candidate from the following values: $\{20.33; 37; 37; 18.5\}$ which results in 18.5 time units. This value is finally promoted as the optimal budget for component C_1. Since in this iteration $[l_2] > [l_1]$, the last two budget candidates in the budget-candidate set correspond to an undefined interval. Both values should therefore be discarded, so that 20.33 is returned which coincides with the optimal solution found by an exhaustive search.

4 A revised FPTAS for budget allocations

Algorithm 1 presents a revised FPTAS to calculate budgets for fixed-priority-scheduled tasks on an EDP resource. The final proof of correctness of this algorithm depends on the correctness of Θ_{\min} as defined by Dewan and Fisher (2010a) in Lemma 4 and Lemma 5. By including the missing case in the corollaries and lemmas and straightforwardly extending the proofs, we obtain an if-statement at the lines 11-17. As a result, $\Theta_{[l_1]}$ and $\Theta_{[l_2]}$ are only conditionally computed. Algorithm 1 (with $k = \infty$) can be used to obtain an exact budget for a given task set and resource period.
Algorithm 1 FPMinimumBudget(T, Π, Δ, k)

1: $\Theta^{\text{min}} \leftarrow \Pi \cdot \sum_{\tau_i \in T} \tau_i$
2: for all $\tau_i \in T$ do
3: $\Theta^i \leftarrow \infty$
4: for all $t_a, t_{a+1} \in \tilde{S_i}(k)$ do
5: $D_{t_a} \leftarrow \hat{rbf}(i, t_a, k) + \sum_{j < i \land t_a \mod T_j = 0} E_j$
6: $l_1 = \frac{(t_{a+1} - \Delta) + \sqrt{((t_{a+1} - \Delta)^2 + 4D_{t_{a+1}}\Pi)}}{2\Pi}$
7: $l_2 = \frac{(t_a - \Delta) + \sqrt{((t_a - \Delta)^2 + 4D_{t_a}\Pi)}}{2\Pi}$
8: if $l_2 \leq l_1$ then
9: $\Theta_{[1]}^i \leftarrow \frac{D_{t_a} + \alpha(\tau_i \land H - \Delta - t_a)}{l_1^{[1]} + \alpha}$
10: end if
11: else
12: $\Theta_{[2]}^i \leftarrow \frac{D_{t_a} + \alpha(\tau_i \land H - \Delta - t_a)}{l_2^{[2]} + \alpha}$
13: end for
14: end for
15: \textbf{return} Θ^{min}

References

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Peter Massuthe, Natalia Sidorova and Jan Martijn van der Werf
Compositional Service Trees

09/02 P.J.I. Cuijpers, F.A.J. Koenders, M.G.P. Pustjens, B.A.G. Senders, P.J.A. van Tilburg, P. Verduin
Queue merge: a Binary Operator for Modeling Queueing Behavior

09/03 Maarten G. Meulen, Frank P.M. Stappers and Tim A.C. Willemse
Breadth-Bounded Model Checking

09/04 Muhammad Atif and MohammadReza Mousavi
Formal Specification and Analysis of Accelerated Heartbeat Protocols

09/05 Michael Franssen
Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, Nicola Zannone and Sandro Etalle
POLIPO: Policies & OntoLogies for the Interoperability, Portability, and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Nick Russell, Philipp Liegl and Hannes Werthner
Pattern-based Analysis of Windows Workflow

09/08 Mike Holenderski, Reinder J. Bril and Johan J. Lukkien
Swift mode changes in memory constrained real-time systems

09/09 Dragomir Bošnački, Aad Mathijssen and Yaroslav S. Usenko
Behavioural analysis of an FC Linux Driver

09/10 Ugur Keskin
In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger
Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt and Jan Friso Groote
Evaluation of a Business Continuity Plan using Process Algebra and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, MohammadReza Mousavi and Michel A. Reniers
A Rule Format for Unit Elements

09/14 Maja Pešić, Dragan Bošnački and Wil M.P. van der Aalst
Enacting Declarative Languages using LTL: Avoiding Errors and Improving Performance

09/15 MohammadReza Mousavi and Emil Sekerinski, Editors
Proceedings of Formal Methods 2009 Doctoral Symposium

09/16 Muhammad Atif
Formal Analysis of Consensus Protocols in Asynchronous Distributed Systems

09/17 Jeroen Keiren and Tim A.C. Willemse
Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, Geert-Jan Houben, Jan Paredaens, Philippe Thiran
On-the-fly Auditing of Business Processes

10/01 Ammar Osaieweran, Marcel Boosten, MohammadReza Mousavi
Analytical Software Design: Introduction and Industrial Experience Report

10/02 F.E.J. Kruseman Aretz
Design and correctness proof of an emulation of the floating-point operations of the Electrologica X8. A case study
<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/03</td>
<td>Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, MohammadReza Mousavi and Michel A. Reniers</td>
<td>On Rule Formats for Zero and Unit Elements</td>
</tr>
<tr>
<td>10/04</td>
<td>Hamid Reza Asaadi, Rantin Khosravi, MohammadReza Mousavi, Neda Noroozi</td>
<td>Towards Model-Based Testing of Electronic Funds Transfer Systems</td>
</tr>
<tr>
<td>10/05</td>
<td>Reinder J. Bril, Uğur Keskin, Moris Behnam, Thomas Nolte</td>
<td>Schedulability analysis of synchronization protocols based on overrun without payback for hierarchical scheduling frameworks revisited</td>
</tr>
<tr>
<td>10/06</td>
<td>Zvezdan Protić</td>
<td>Locally unique labeling of model elements for state-based model differences</td>
</tr>
<tr>
<td>10/07</td>
<td>C.G.U. Okwudire and R.J. Bril</td>
<td>Converting existing analysis to the EDP resource model</td>
</tr>
<tr>
<td>10/08</td>
<td>Muhammed Atif, Sjoerd Cranan, MohammadReza Mousavi</td>
<td>Reconstruction and verification of group membership protocols</td>
</tr>
<tr>
<td>10/09</td>
<td>Sjoerd Cranan, Jan Friso Groote, Michel Reniers</td>
<td>A linear translation from LTL to the first-order modal µ-calculus</td>
</tr>
<tr>
<td>10/10</td>
<td>Mike Holenderski, Wim Cools, Reinder J. Bril, Johan J. Lukkien</td>
<td>Extending an Open-source Real-time Operating System with Hierarchical Scheduling</td>
</tr>
<tr>
<td>10/11</td>
<td>Eric van Wyk and Steffen Zschaler</td>
<td>1st Doctoral Symposium of the International Conference on Software Language Engineering (SLE)</td>
</tr>
<tr>
<td>10/12</td>
<td>Pre-Proceedings</td>
<td>3rd International Software Language Engineering Conference</td>
</tr>
<tr>
<td>10/13</td>
<td>Faisal Kamiran, Toon Calders and Mykola Pechenizki</td>
<td>Discrimination Aware Decision Tree Learning</td>
</tr>
<tr>
<td>10/14</td>
<td>J.F. Groote, T.W.D.M. Kouters and A.A.H. Osaierwanna</td>
<td>Specification Guidelines to avoid the State Space Explosion Problem</td>
</tr>
<tr>
<td>10/15</td>
<td>Daniel Trivellato, Nicola Zannone and Sandro Etalle</td>
<td>GEM: a Distributed Goal Evaluation Algorithm for Trust Management</td>
</tr>
<tr>
<td>10/17</td>
<td>L. Aceto, A. Birgisson, A. Ingolfsdottir, and M.R. Mousavi</td>
<td>Decompositional Reasoning about the History of Parallel Processes</td>
</tr>
<tr>
<td>10/18</td>
<td>P.D. Mosses, M.R. Mousavi and M.A. Reniers</td>
<td>Robustness os Behavioral Equivalence on Open Terms</td>
</tr>
<tr>
<td>10/19</td>
<td>Harsh Beohar and Pieter Cuijpers</td>
<td>Desynchronisability of (partial) closed loop systems</td>
</tr>
<tr>
<td>11/01</td>
<td>Kees M. van Hee, Natalia Sidorova and Jan Martijn van der Werf</td>
<td>Refinement of Synchronizable Places with Multi-workflow Nets - Weak termination preserved!</td>
</tr>
<tr>
<td>11/02</td>
<td>M.F. van Amstel, M.G.J. van den Brand and L.J.P. Engelen</td>
<td>Using a DSL and Fine-grained Model Transformations to Explore the boundaries of Model Verification</td>
</tr>
<tr>
<td>11/05</td>
<td>Jan Friso Groote and Jan Lanik</td>
<td>Semantics, bisimulation and congruence results for a general stochastic process operator</td>
</tr>
<tr>
<td>11/06</td>
<td>P.J.L. Cuijpers</td>
<td>Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence</td>
</tr>
<tr>
<td>11/07</td>
<td>F.P.M. Stappers, M.A. Reniers and S. Weber</td>
<td>Transforming SOS Specifications to Linear Processes</td>
</tr>
<tr>
<td>11/08</td>
<td>Debyjoti Bera, Kees M. van Hee, Michiel van Oseh and Jan Martijn van der Werf</td>
<td>A Component Framework where Port Compatibility Implies Weak Termination</td>
</tr>
<tr>
<td>11/09</td>
<td>Tsesuren Batsauri, Reinder J. Bril and Johan Lukkien</td>
<td>Model, analysis, and improvements for inter-vehicle communication using one-hop periodic broadcasting based on the 802.11p protocol</td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>11/10</td>
<td>Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi and Tim A.C. Willemse</td>
<td>Synchronizing Asynchronous Conformance Testing</td>
</tr>
<tr>
<td>11/11</td>
<td>Jeroen J.A. Keiren and Michel A. Reniers</td>
<td>Type checking mCRL2</td>
</tr>
<tr>
<td>11/12</td>
<td>Muhammad Atif, Mohammad Reza Mousavi and Ammar Osaiweran</td>
<td>Formal Verification of Unreliable Failure Detectors in Partially Synchronous Systems</td>
</tr>
<tr>
<td>11/13</td>
<td>J.F. Groote, A.A.H. Osaiweran and J.H. Wesselius</td>
<td>Experience report on developing the Front-end Client unit under the control of formal methods</td>
</tr>
<tr>
<td>11/15</td>
<td>John Businge, Alexander Serebrenik and Mark van den Brand</td>
<td>Eclipse API Usage: The Good and The Bad</td>
</tr>
<tr>
<td>11/17</td>
<td>M.F. van Amstel, A. Serebrenik and M.G.J. van den Brand</td>
<td>Visualizing Traceability in Model Transformation Compositions</td>
</tr>
<tr>
<td>11/18</td>
<td>F.P.M. Stappers, M.A. Reniers, J.F. Groote and S. Weber</td>
<td>Dogfooding the Structural Operational Semantics of mCRL2</td>
</tr>
<tr>
<td>12/01</td>
<td>S. Cranen</td>
<td>Model checking the FlexRay startup phase</td>
</tr>
<tr>
<td>12/02</td>
<td>U. Khadim and P.J.L. Cuijpers</td>
<td>Appendix C / G of the paper: Repairing Time-Determinism in the Process Algebra for Hybrid Systems ACP</td>
</tr>
<tr>
<td>12/03</td>
<td>M.M.H.P. van den Heuvel, P.J.L. Cuijpers, J.J. Lukkien and N.W. Fisher</td>
<td>Revised budget allocations for fixed-priority-scheduled periodic resources</td>
</tr>
<tr>
<td>12/04</td>
<td>Ammar Osaiweran, Tom Fransen, Jan Friso Groote and Bart van Rijnsoever</td>
<td>Experience Report on Designing and Developing Control Components using Formal Methods</td>
</tr>
<tr>
<td>12/05</td>
<td>Sjoerd Cranen, Jeroen J.A. Keiren and Tim A.C. Willemse</td>
<td>A cure for stuttering parity games</td>
</tr>
<tr>
<td>12/06</td>
<td>A.P. van der Meer</td>
<td>CIF MSOS type system</td>
</tr>
</tbody>
</table>