Revised budget allocations for fixed-priority-scheduled periodic resources

Martijn M.H.P. van den heuvel, Pieter J.L. Cuijpers, Johan J. Lukkien, Nathan Fisher

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra
prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&Sort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&Sort=Year&Level=1

Computer Science Reports 12-03
Eindhoven, February 2012
Revised budget allocations for fixed-priority-scheduled periodic resources

Martijn M. H. P. van den Heuvel · Pieter J. L. Cuijpers · Johan J. Lukkien · Nathan Fisher

Received: date / Accepted: February 21, 2012

1 Introduction

Hierarchical scheduling frameworks (HSFs) facilitate a decoupling of development of individual components from their integration on a shared uniprocessor platform. The periodic resource models of Shin and Lee (2008) and Easwaran et al (2007), characterizing periodic resource allocations to components, are complemented with novel methods to abstract timing requirements in the hierarchy of schedulers. HSFs provide temporal isolation between components by allocating a guaranteed resource share, i.e. a budget, to each component.

Dewan and Fisher (2010a) claim a unique, fully polynomial approximation scheme (FPTAS) to calculate a budget for a given task set and resource period. The special case where the approximation parameter $k = \infty$ should yield an exact budget, which is computed more efficiently than the exhaustive search proposed by Shin and Lee (2008). We show that Dewan and Fisher (2010a) may yield optimistic budgets and we propose a correction for their algorithm.

2 System Model

We use the explicit-deadline periodic resource (EDP) model of Easwaran et al (2007) to specify guaranteed processor allocations to components. The timing interface of a component C is specified by a triple (Π, Θ, Δ), where $\Pi \in \mathbb{Z}^+$ denotes its period, $\Theta \in \mathbb{R}^+$ its budget and $\Delta \in \mathbb{R}^+$ is the relative deadline.
of the EDP resource with $\Theta \leq \Delta \leq \Pi$. The periodic resource model Γ, proposed by Shin and Lee (2008), is a specialization of the EDP resource Ω with characteristics $\Gamma(\Pi, \Theta) = \Omega(\Pi, \Theta, \Pi)$.

A component C contains a set T of n sporadic tasks τ_1, \ldots, τ_n. Each task $\tau_i \in T$ is characterized by a triple (T_i, E_i, D_i), where $T_i \in \mathbb{R}^+$ denotes its minimum inter-arrival time, $E_i \in \mathbb{R}^+$ its worst-case computation time, and $D_i \in \mathbb{R}^+$ its relative deadline, where $0 < E_i \leq D_i \leq T_i$. We assume that tasks are given in priority order, i.e. τ_1 has the highest priority and τ_n the lowest.

The sufficient schedulability condition presented by Dewan and Fisher (2010a) deems a task set T schedulable on an EDP resource Ω, if

$$\forall 1 \leq i \leq n \exists t \in \tilde{S}_i(k) : \tilde{rbf}(i, t, k) \leq \text{sbf}_\Omega(t),$$

where the supply bound function $\text{sbf}_\Omega(t)$ computes the minimum processor supply for any interval of length t, i.e.

$$\text{sbf}_\Omega(t) = \max \{ 0, (h(\Omega, t) - 1)\Theta, t - (h(\Omega, t) + 1)(\Pi - \Theta) + (\Pi - \Delta) \},$$

with $h(\Omega, t) = \left\lceil \frac{t - (\Delta - \Theta)}{\Pi} \right\rceil$ and the cumulative requested processor time by task τ_i using approximation parameter k is:

$$\tilde{rbf}(i, t, k) \overset{\text{def}}{=} E_i + \sum_{1 \leq j < i} \delta(j, t, k)$$

and the ordered set of testing points is defined as

$$\tilde{S}_i(k) \overset{\text{def}}{=} \{ t = b \cdot T_a \mid a = 1, \ldots, i - 1; \ b = 1, \ldots, k; \ t \in (0, D_i] \} \cup \{ 0, D_i \}. \ (4)$$

For the special case where $k = \infty$, the schedulability condition in (1) specializes to the exact schedulability condition of Easwaran et al (2007).

Problem statement: Given a task set T, a period Π, a deadline Δ and parameter k, we want to determine the minimum budget Θ_{min} satisfying Equation (1).

3 Revisiting existing budget-allocation algorithms

We present a counter example, considering the optimism in the algorithm by Dewan and Fisher (2010a) for fixed-priority-scheduled components. For EDF-scheduled components, Fisher and Dewan (2009) presented a fundamentally different FPTAS compared to the FPTAS for fixed-priority scheduling reconsidered in this paper.

Counter example: Consider a fixed-priority-scheduled component C_1 with a period $\Pi_1 = \Delta_1 = 67$ and with two tasks $\tau_1 = (169, 1.5, 169)$ and $\tau_2 = (177, 34, 177)$. For this example, Dewan and Fisher (2010a) yield an optimistic budget of 18.5 time units. The required budget for component C_1 is,
Revised budget allocations for fixed-priority-scheduled periodic resources however, 20.33 time units. Task τ_2 therefore violates (1), because $\forall t \in \hat{S}_2(\infty) : \text{rbf}(2, t, \infty) > \text{sbf}(167.18, 5.67)(t)$.

Since the algorithm by Dewan and Fisher (2010a) fails the exact schedulability test (for $k = \infty$) in (1), their budget allocations are optimistic. Fortunately, the source of optimism by Dewan and Fisher (2010a) can be found in their proofs (see the internal report by Dewan and Fisher (2010b)).

Lemma 12 of Dewan and Fisher (2010b) presents a budget candidate, $\Theta_{t_a}^{\min}$, for each consecutive pair of values t_a and t_{a+1} in the testing set $\hat{S}_i(k)$ of task τ_i. The definition of $\Theta_{t_a}^{\min}$ is only valid for a specific domain of l_1 and l_2 values, i.e. $[1, [l_2] - 1], [[l_2], [l_1]],$ and $[[l_1] + 1, \infty]$, and the values of l_1 and l_2 each reconstruct an $h_{t_a,t}(t)$. Lemma 11 and the corollaries 1, 2 and 3 subsequently capture these three regions. Corollary 4 only calculates $\Theta_{t_a}^{\min}$ at the boundaries of the regions defined by l_1 and l_2. However, Dewan and Fisher (2010b) have forgotten the remaining case in Corollary 4, i.e. $[l_2] > [l_1]$. This also leaves Lemma 12 incomplete.

Reconsidering the example: task τ_2 has a testing set of $\{0, 169, 177\}$ according to (4). This task requires two iterations: one considering interval $[0, 169]$ and one considering interval $[169, 177]$. For interval $[169, 177]$, the algorithm picks the smallest candidate from the following values: $\{20.33; 37; 37; 18.5\}$ which results in 18.5 time units. This value is finally promoted as the optimal budget for component C_1. Since in this iteration $[l_2] > [l_1]$, the last two budget candidates in the budget-candidate set correspond to an undefined interval. Both values should therefore be discarded, so that 20.33 is returned which coincides with the optimal solution found by an exhaustive search.

4 A revised FPTAS for budget allocations

Algorithm 1 presents a revised FPTAS to calculate budgets for fixed-priority-scheduled tasks on an EDP resource. The final proof of correctness of this algorithm depends on the correctness of $\Theta_{t_a}^{\min}$ as defined by Dewan and Fisher (2010a) in Lemma 4 and Lemma 5. By including the missing case in the corollaries and lemmas and straightforwardly extending the proofs, we obtain an if-statement at the lines 11-17. As a result, $\Theta_{[l_1]}$ and $\Theta_{[l_2]}$ are only conditionally computed. Algorithm 1 (with $k = \infty$) can be used to obtain an exact budget for a given task set and resource period.
Algorithm 1 FPMinimumBudget(T, $Π$, $Δ$, k)

1: $Θ_{\text{min}} \leftarrow Π \sum_{τ_i \in T} T_i$
2: for all $τ_i \in T$ do
3: $Θ_{\text{min}}^i \leftarrow \infty$
4: for all $t_a, t_{a+1} \in \tilde{S}_i(k)$ do
5: $D_{ta} \leftarrow \hat{r}_b(i,t_a,k) + \sum_{j<i \land t_a \text{ mod } T_j=0} E_j$
6: $l_1 = \frac{(t_{a+1} - Δ) + \sqrt{(t_{a+1} - Δ)^2 + 4Π D_{ta+1}}}{2Π}$
7: $l_2 = \frac{(t_a - Δ) + \sqrt{(t_a - Δ)^2 + 4Π D_{ta}}}{2Π}$
8: $Θ_{[l_1]+1} \leftarrow D_{ta} + \frac{1}{Π} \left[\frac{l_1}{l_1+1} \right]$
9: $Θ_{[l_2]+1} \leftarrow D_{ta} + \frac{1}{Π} \left[\frac{l_2}{l_2+1} \right]$
10: if $l_2 \leq l_1$ then
11: $α \leftarrow \sum_{τ_i \in T \land t_a \geq D_i + (k-1)Π_j} \frac{E_i}{Π_j}$
12: $Θ_{[l_1]+1} \leftarrow D_{ta} + α \left[\frac{l_1}{l_1+1} \right]$
13: $Θ_{[l_2]+1} \leftarrow D_{ta} + α \left[\frac{l_2}{l_2+1} \right]$
14: else
15: $Θ_{[l_1]+1}, Θ_{[l_2]+1} \leftarrow \infty$
16: end if
17: end for
18: $Θ_{\text{min}} \leftarrow \min\{Θ_{[l_1]+1}, Θ_{[l_2]+1}, Θ_{[l_1]}, Θ_{[l_2]}\}$
19: $Θ_{\text{min}}^i \leftarrow \min(Θ_{\text{min}}^i, Θ_{\text{min}})$
20: end for
21: $Θ_{\text{min}} \leftarrow \max(Θ_{\text{min}}, Θ_{\text{min}})$
22: return $Θ_{\text{min}}$

References

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the requested reports).

In this series appeared (from 2009):

<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01</td>
<td>Wil M.P. van der Aalst, Kees M. van Hee, Peter Massuthe, Natalia Sidorova and Jan Martijn van der Werf</td>
<td>Compositional Service Trees</td>
</tr>
<tr>
<td>09/03</td>
<td>Maarten G. Meulen, Frank P.M. Stappers and Tim A.C. Willemse</td>
<td>Breadth-Bounded Model Checking</td>
</tr>
<tr>
<td>09/04</td>
<td>Muhammad Atif and MohammadReza Mousavi</td>
<td>Formal Specification and Analysis of Accelerated Heartbeat Protocols</td>
</tr>
<tr>
<td>09/05</td>
<td>Michael Franssen</td>
<td>Placeholder Calculus for First-Order logic</td>
</tr>
<tr>
<td>09/06</td>
<td>Daniel Trivellato, Fred Spiessens, Nicola Zannone and Sandro Etalle</td>
<td>POLIPO: Policies & OntoLogies for the Interoperability, Portability, and autOnomy</td>
</tr>
<tr>
<td>09/07</td>
<td>Marco Zapletal, Wil M.P. van der Aalst, Nick Russell, Philipp Liegl and Hannes Werthner</td>
<td>Pattern-based Analysis of Windows Workflow</td>
</tr>
<tr>
<td>09/08</td>
<td>Mike Holenderski, Reinder J. Bril and Johan J. Lukkien</td>
<td>Swift mode changes in memory constrained real-time systems</td>
</tr>
<tr>
<td>09/09</td>
<td>Dragan Bošnački, Aad Mathijssen and Yaroslav S. Usenko</td>
<td>Behavioural analysis of an FC Linux Driver</td>
</tr>
<tr>
<td>09/10</td>
<td>Ugur Keskin</td>
<td>In-Vehicle Communication Networks: A Literature Survey</td>
</tr>
<tr>
<td>09/11</td>
<td>Bas Ploeger</td>
<td>Analysis of ACS using mCRL2</td>
</tr>
<tr>
<td>09/12</td>
<td>Wolfgang Boehmer, Christoph Brandt and Jan Friso Groote</td>
<td>Evaluation of a Business Continuity Plan using Process Algebra and Modal Logic</td>
</tr>
<tr>
<td>09/13</td>
<td>Luca Aceto, Anna Ingolfsdottir, MohammadReza Mousavi and Michel A. Reniers</td>
<td>A Rule Format for Unit Elements</td>
</tr>
<tr>
<td>09/14</td>
<td>Maja Pešić, Dragan Bošnački and Wil M.P. van der Aalst</td>
<td>Enacting Declarative Languages using LTL: Avoiding Errors and Improving Performance</td>
</tr>
<tr>
<td>09/16</td>
<td>Mohammad Atif</td>
<td>Formal Analysis of Consensus Protocols in Asynchronous Distributed Systems</td>
</tr>
<tr>
<td>09/17</td>
<td>Jeroen Keiren and Tim A.C. Willemse</td>
<td>Bisimulation Minimisations for Boolean Equation Systems</td>
</tr>
<tr>
<td>09/18</td>
<td>Kees van Hee, Jan Hidders, Geert-Jan Houben, Jan Paredaens, Philippe Thiran</td>
<td>On-the-fly Auditing of Business Processes</td>
</tr>
<tr>
<td>10/01</td>
<td>Ammar Osaivaran, Marcel Boosten, MohammadReza Mousavi</td>
<td>Analytical Software Design: Introduction and Industrial Experience Report</td>
</tr>
<tr>
<td>10/02</td>
<td>F.E.J. Kruseman Aretz</td>
<td>Design and correctness proof of an emulation of the floating-point operations of the Electrologica X8. A case study</td>
</tr>
</tbody>
</table>
10/03 Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, MohammadReza Mousavi and Michel A. Reniers
On Rule Formats for Zero and Unit Elements

10/04 Hamid Reza Asaadi, Rantin Khosravi, MohammadReza Mousavi, Neda Noroozi
Towards Model-Based Testing of Electronic Funds Transfer Systems

10/05 Reinder J. Bril, Uğur Keskin, Moris Behnam, Thomas Nohe
Schedulability analysis of synchronization protocols based on overrun without payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić
Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril
Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, MohammadReza Mousavi
Reconstruction and verification of group membership protocols

10/09 Sjoerd Cranen, Jan Friso Groote, Michel Reniers
A linear translation from LTL to the first-order modal μ-calculus

10/10 Mike Holenderski, Wim Cools, Reinder J. Bril, Johan J. Lukkien
Extending an Open-source Real-time Operating System with Hierarchical Scheduling

10/11 Eric van Wyk and Steffen Zschaler
1st Doctoral Symposium of the International Conference on Software Language Engineering (SLE)

10/12 Pre-Proceedings
3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Mykola Pechenizkiy
Discrimination Aware Decision Tree Learning

10/14 J.F. Groote, T.W.D.M. Kouters and A.A.H. Osaiweran
Specification Guidelines to avoid the State Space Explosion Problem

10/15 Daniel Trivellato, Nicola Zannone and Sandro Etalle
GEM: a Distributed Goal Evaluation Algorithm for Trust Management

Rule Formats for Distributivity

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, and M.R. Mousavi
Decompositional Reasoning about the History of Parallel Processes

10/18 P.D. Mosses, M.R. Mousavi and M.A. Reniers
Robustness of Behavioral Equivalence on Open Terms

10/19 Harsh Beohar and Pieter Cuijpers
Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova and Jan Martijn van der Werf
Refinement of Synchronizable Places with Multi-workflow Nets - Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand and L.J.P. Engelen
Using a DSL and Fine-grained Model Transformations to Explore the boundaries of Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi
Reconciling Operational and Epistemic Approaches to the Formal Analysis of Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and J.H. Wesselius
Benefits of Applying Formal Methods to Industrial Control Software

11/05 Jan Friso Groote and Jan Lanik
Semantics, bisimulation and congruence results for a general stochastic process operator

11/06 P.J.L. Cuijpers
Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and S. Weber
Transforming SOS Specifications to Linear Processes

11/08 Debjyoti Bera, Kees M. van Hee, Michiel van Oseh and Jan Martijn van der Werf
A Component Framework where Port Compatibility Implies Weak Termination

11/09 Tseseuren Batsuuri, Reinder J. Bril and Johan Lukkien
Model, analysis, and improvements for inter-vehicle communication using one-hop periodic broadcasting based on the 802.11p protocol
<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/10</td>
<td>Neda Noroozi, Ramtin Khosravi, MohammadReza Mousavi and Tim A.C. Willemse</td>
<td>Synchronizing Asynchronous Conformance Testing</td>
</tr>
<tr>
<td>11/11</td>
<td>Jeroen J.A. Keiren and Michel A. Reniers</td>
<td>Type checking mCRL2</td>
</tr>
<tr>
<td>11/12</td>
<td>Muhammad Atif, MohammadReza Mousavi and Ammar Osaiweran</td>
<td>Formal Verification of Unreliable Failure Detectors in Partially Synchronous Systems</td>
</tr>
<tr>
<td>11/13</td>
<td>J.F. Groote, A.A.H. Osaiweran and J.H. Wesselsius</td>
<td>Experience report on developing the Front-end Client unit under the control of formal methods</td>
</tr>
<tr>
<td>11/15</td>
<td>John Busing, Alexander Serebrenik and Mark van den Brand</td>
<td>Eclipse API Usage: The Good and The Bad</td>
</tr>
<tr>
<td>11/17</td>
<td>M.F. van Amstel, A. Serebrenik and M.G.J. van den Brand</td>
<td>Visualizing Traceability in Model Transformation Compositions</td>
</tr>
<tr>
<td>11/18</td>
<td>F.P.M. Stappers, M.A. Reniers, J.F. Groote and S. Weber</td>
<td>Dogfooding the Structural Operational Semantics of mCRL2</td>
</tr>
<tr>
<td>12/01</td>
<td>S. Cranen</td>
<td>Model checking the FlexRay startup phase</td>
</tr>
<tr>
<td>12/02</td>
<td>U. Khadim and P.J.L. Cuijpers</td>
<td>Appendix C/G of the paper: Repairing Time-Determinism in the Process Algebra for Hybrid SystemsACP</td>
</tr>
<tr>
<td>12/03</td>
<td>M.M.H.P. van den Heuvel, P.J.L. Cuijpers, J.J. Lukkien and N.W. Fisher</td>
<td>Revised budget allocations for fixed-priority-scheduled periodic resources</td>
</tr>
<tr>
<td>12/04</td>
<td>Ammar Osaiweran, Tom Fransen, Jan Friso Groote and Bart van Rijnsoever</td>
<td>Experience Report on Designing and Developing Control Components using Formal Methods</td>
</tr>
<tr>
<td>12/05</td>
<td>Sjoerd Cranen, Jeroen J.A. Keiren and Tim A.C. Willemse</td>
<td>A cure for stuttering parity games</td>
</tr>
<tr>
<td>12/06</td>
<td>A.P. van der Meer</td>
<td>CIF MSOS type system</td>
</tr>
</tbody>
</table>