Modeling all-solid-state Li-ion batteries

Citation for published version (APA):

DOI:
10.1149/1.3521414

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A mathematical model for all-solid-state Li-ion batteries is presented. The model includes the charge transfer kinetics at the electrode/electrolyte interface, diffusion of lithium in the intercalation electrode, and diffusion and migration of ions in the electrolyte. The model has been applied to the experimental data taken from a 10 μA h planar thin-film all-solid-state Li-ion battery, produced by radio frequency magnetron sputtering. This battery consists of a 320 nm thick polycrystalline LiCoO₂ cathode and a metallic Li anode separated by 1.5 μm LiPO₄ solid-state electrolyte. Such thin-film batteries are nowadays often employed as power sources for various types of autonomous devices, including wireless sensor nodes and medical implants. Mathematical modeling is an important tool to describe the performance of these batteries in these applications. The model predictions agree well with the galvanostatically measured voltage profiles. The simulations show that the transport limitations in the solid-state Li-ion batteries increasingly occur and amounts to at least half of the total overpotential. This contribution becomes even larger when the current density reaches 0.5 mA cm⁻² or higher. It is concluded from the simulations that significant concentration gradients develop in both the positive electrode and the solid-state electrolyte during a high current (dis)charge.

© 2010 The Electrochemical Society. [DOI: 10.1149/1.3521414] All rights reserved.
ond term takes into account the concentration dependence of the right-hand side represents the standard redox potential and the second term on the which is recognized as the Nernst equation. The first term on the
eq \frac{\partial \bar{E}_{LiCoO_2}}{\partial \bar{t}_{Li}}
\end{align}

An expression for the equilibrium potential \(\eta_{eq}^{\text{LiCoO}_2} \) can then be obtained from Eq. 6

\[
\eta_{eq}^{\text{LiCoO}_2} = \frac{RT}{F} \ln \frac{k^0_{LiCoO_2}}{k^0_{Li}} = \frac{RT}{F} \ln \frac{k^0_{LiCoO_2}}{k^0_{Li}} + \frac{RT}{F} \ln \frac{\bar{a}_{LiCoO_2}}{\bar{a}_{Li}}
\]

which is recognized as the Nernst equation. The first term on the right-hand side represents the standard redox potential and the second term takes into account the concentration dependence of the electrode potential. Eliminating \(\eta_{eq}^{\text{LiCoO}_2} \) in Eq. 6, using Eq. 7, leads to a general expression for \(I_{LiCoO_2} \)

\[
I_{LiCoO_2} = FAk^0_{LiCoO_2}k^0_{LiCoO_2}(1-\eta_{LiCoO_2})
\]

in which \(k^0_i \) is the standard rate constant for reaction Eq. 1.

If an overpotential \(\eta_{\text{LiCoO}_2} \) is applied to drive the charge transfer (\text{^1}) reaction at the positive electrode, then Eqs. 5a and 5b can be rewritten as

\[
I_s = FAk^0_{LiCoO_2}k^0_{LiCoO_2}(1-\eta_{LiCoO_2})(1-\eta_{LiCoO_2})\exp\left(-\frac{E_0^{\text{LiCoO}_2} + \eta_{\text{LiCoO}_2}}{RT}\right)
\]

\[
I_s = FAk^0_{LiCoO_2}k^0_{LiCoO_2}(1-\eta_{LiCoO_2})(1-\eta_{LiCoO_2})\exp\left(-\frac{E_0^{\text{LiCoO}_2} + \eta_{\text{LiCoO}_2}}{RT}\right)
\]

Combining the partial cathodic and partial anodic current–potential curves, \(I = I_s - I_a \) yields an expression for the kinetics of the charge transfer reaction at the positive electrode. When, in addition, the exchange current, as represented by Eq. 8, is introduced, the following current–potential dependence is obtained

\[
I_{LiCoO_2} = \bar{I}_{LiCoO_2}\left[\frac{\bar{a}_{LiCoO_2}}{\bar{a}_{Li}} - \frac{\bar{a}_{LiCoO_2}}{\bar{a}_{Li}} e^{-(1-\eta_{LiCoO_2})(1-\eta_{LiCoO_2})}\right]
\]

Under fully kinetically controlled conditions, \(\bar{a}_{LiCoO_2} \bar{a}_{Li} = 1 \) and \(\bar{a}_{LiCoO_2} \bar{a}_{Li} = 1 \) and Eq. 10 can be simplified to the Butler–Volmer equation

\[
I_{LiCoO_2} = \bar{I}_{LiCoO_2}\left[\frac{\bar{a}_{LiCoO_2}}{\bar{a}_{Li}} - \frac{\bar{a}_{LiCoO_2}}{\bar{a}_{Li}} e^{-(1-\eta_{LiCoO_2})(1-\eta_{LiCoO_2})}\right]
\]

In a similar way, the kinetics of the second electrode reaction Eq. 2 can be derived. The general expression for the charge transfer reaction at the metallic lithium electrode can be represented by

\[
I_{Li} = \bar{I}_{Li}\left[\frac{\bar{a}_{Li}}{\bar{a}_{Li}} - \frac{\bar{a}_{Li}}{\bar{a}_{Li}} e^{-(1-\eta_{Li})(1-\eta_{Li})}\right]
\]

where \(\bar{a}_{Li} \) and \(\bar{a}_{Li} \) are the surface and bulk activities of the metallic Li (mol m^-3), \(\alpha_{Li} \) is the charge transfer coefficient for reaction Eq. 2, \(\eta_{\text{Li}}^{\text{Li}} \) is the overpotential of the charge transfer reaction at the negative electrode, and the exchange current \(\bar{I}_{Li} \) is given by

\[
\bar{I}_{Li} = FAK_0(\bar{a}_{Li})^n(\bar{a}_{Li})^{(1-n)}
\]

where \(K_0 \) is the standard rate constant for reaction Eq. 2. Obviously, the activity of metallic lithium is considered unity. Furthermore, it has been reported that the exchange current density for the metallic lithium electrodes is much larger than that for LiCoO_2, and because the electrode areas are exactly the same for planar thin-film batteries it is to be expected that \(\eta_{\text{Li}}^{\text{Li}} \) is much smaller than \(\eta_{\text{Li}}^{\text{LiCoO}_2} \). For convenience, the charge transfer kinetics of the metallic lithium reaction will therefore be neglected in this work.

Diffusion and migration in the electrolyte.—The Li_2PO_4-based solid-state electrolyte is a typical ionic conductor in which the conductivity is caused by the transport of Li^+ ions only. Lithium oxide–phosphorus pentoxide (Li_2O–P_2O_5) is a classical glass-forming system. It is known that a quasi-two-dimensional polymeric network of P_2O_5 is depolymerized in the presence of a modifier, such as Li_2O. This Li_2O-induced modification results in converting the bridging oxygen atoms to nonbridging oxygen atoms (nBO_5’s). The “weak electrolyte” models conclude that Li may reside in the two types of states in the glass matrix and assume that the ionic conduction process is dominated by the ions, thermally populating the higher energy (mobile) sites. The chemical reaction of the ionization reaction

\[
\text{Li}^+ + \text{e}^- \rightarrow \text{Li} \]

\[
\text{Li}^+ + \text{e}^- \rightarrow \text{Li} \]
describes the transfer process of immobile, oxygen-binded lithium (indicated by Li$_0$) to mobile Li$^+$ ions leaving uncompensated negative charges (n$^-$) behind, which are chemically associated with the closest nBO's. In Eq. 14, k_a is the dissociation rate constant for the ionic generation reaction (s$^{-1}$) and k_i is the rate constant for the inverse recombination reaction (mol$^{-1}$ s$^{-1}$). Both constants obey Arrhenius law. Denoting the activity of mobile Li$^+$ ions by a_{Li^+} (mol m$^{-3}$), the activity of immobile Li ions by a_{Li_0} (mol m$^{-3}$), the activity of n$^-$ by a_n (mol m$^{-3}$), the total activity of Li atoms in the Li$_2$PO$_4$ matrix by a_0 (mol m$^{-3}$), and the fraction of Li, which resides in equilibrium in the mobile state by δ, the equilibrium activity of the charge carriers can be represented by $a_{Li^+}^0 = a_n^0 = \delta a_0$. The equilibrium activity of immobile lithium is consequently given by $a_{Li_0}^0 = (1-\delta) a_0$. Under equilibrium conditions, the rates of the forward and backward reactions are equal ($k_a a_{Li_0}^0 = k_i a_{Li^+}^0 a_n^0$), which implies that $k_a = k_i a_{Li_0}^0/(1-\delta)$. The overall rate of the charge carrier generation is given by $r_a = k_a a_{Li_0}^0 = k_i a_{Li^+}^0 a_n^0$, and the net rate of the inverse reaction is given by the opposite number.

The net current passing the electrode/electrolyte interface induces an ionic mass and charge transport in the electrolyte. In the case of a flat geometry, it is reasonable to assume that the ionic transport in the electrolyte is also a one-dimensional process, which can be described by the Nerst–Planck equation

$$J_j = -D_j \frac{\partial a_j}{\partial y} + \frac{z_j F}{RT} D_j \frac{\partial E}{\partial y}$$

where $J(y,t)$ is the flux of species j (mol m$^{-2}$ s$^{-1}$) at a distance y from the surface of the negative electrode at any moment in time t, D_j is the diffusion coefficient of j (mol m$^{-2}$ s$^{-1}$), $\partial a_j/\partial y$ is the concentration gradient (mol m$^{-3}$), E is the potential gradient (V m$^{-1}$), z_j is the valence (dimensionless), and a_j is the activity (mol m$^{-3}$) of species j. The two terms on the right-hand side of Eq. 15 represent the diffusion and migration contributions to the ionic flux.

Denoting $r_d = r$ and $r_e = -r$ where $r = k_a a_{Li_0}^0 - k_i a_{Li^+}^0 a_n^0$, it can be shown that the two partial differential equations, describing the diffusion–migration process combined with the generation/ recombination reaction Eq. 14, can be represented by:

$$\frac{\partial a_{Li^+}}{\partial t} = -\frac{\partial J_{Li^+}}{\partial y} + r$$

$$a_{Li^+}(y,0) = \delta a_0$$

$$J_{Li^+}(0,t) = \frac{I(t)}{z_{Li^+} F A}$$

and

$$\frac{\partial a_n}{\partial t} = -\frac{\partial J_n}{\partial y} + r$$

$$a_n(y,0) = \delta a_0$$

$$J_n(0,t) = 0$$

$$J_n(L,t) = 0$$

where $I_{LiCoO_2}(t)$ and $I_{Li}(t)$ are the charge transfer currents at the positive and negative electrodes, respectively. Equations 16a and 17a represent the mass balances, Eqs. 16b and 17b reflect the fact that at $t = 0$ no concentration profiles have been developed yet and hence that the activities of the charge carriers are equal to their equilibrium activities. Equations 16c, 16d, 17c, and 17d represent the flux conditions at the left and right boundaries of the electrolyte (see also Fig. 1b). Assuming that no side reactions take place, the current flowing through the battery can simply be represented by $I(t) = I_{LiCoO_2}(t) = -I_{Li}(t)$. Equations 16 and 17 accommodate diffusion and migration of both charge carriers. In line with Eq. 15, the flux of each charge carrier is considered independently. Equations 16 and 17 are solved under the electroneutrality condition $a_{Li^+}(y,t) = a_{Li^+}(y,t) = a_{Li^+}(y,t) + a_{Li^+}(y,t)$. It can be shown that Eqs. 16 and 17 can be reduced to the diffusion equation with respect to $a(y,t)$, according to

$$\frac{\partial a}{\partial t} = \frac{2D_{Li^+} D_{n^-} \sigma a}{D_{Li^+} + D_{n^-} + r}$$

$$a(y,0) = \delta a_0$$

$$\frac{\partial a(0,t)}{\partial y} = \frac{I(t)}{2F D_{Li^+}}$$

$$\frac{\partial a(L,t)}{\partial y} = \frac{I(t)}{2F D_{Li^+}}$$

and an analytical expression for the electric field is obtained

$$E(y,t) = \frac{RT}{F} \ln \left(\frac{a(L,t)}{a(0,t)} \right) - \int_0^L E(y,t) dy$$

The total mass-transfer (m^0) overpotential across the Li$_3$PO$_4$ electrolyte $\eta_{Li_3^0}$ can then be given by

$$\eta_{Li_3^0}(t) = \frac{RT}{F} \ln \left(\frac{a(L,t)}{a(0,t)} \right) - \int_0^L E(y,t) dy$$

The first and the second terms in Eq. 20 define the diffusion and migration components of the total overpotential, respectively.

Diffusion in the electrode.—The positive electrode consists of trivalent cobaltoxide species, in which the lithium ions are intercalated (LiCoO$_2$). According to Refs. 28 and 29 Li$^+$ ions in LiCoO$_2$ are screened by the mobile electrons, which accompany Li$^+$ when it moves from one interstitial site to the other. This screening implies that the migration term can be neglected. Assuming, for simplicity reasons, that the rate of phase transition does not play an important role and considering the diffusion coefficients in both phases to be equal, the mass transport of Li ions inside the positive electrode can be described by the standard diffusion equation

$$\frac{\partial a_{LiCoO_2}}{\partial t} = D_{Li} \frac{\sigma a_{LiCoO_2}}{\partial y}$$

$$a_{LiCoO_2}(y,0) = a_{LiCoO_2}^0$$

$$D_{Li} \frac{\partial a_{LiCoO_2}(L, t)}{\partial y} = \frac{I(t)}{FA}$$

$$D_{Li} \frac{\partial a_{LiCoO_2}(L + M, t)}{\partial y} = 0$$

where $a_{LiCoO_2}(y,t)$ is the Li$^+$ activity (mol m$^{-3}$) in location y at any moment of time t, $a_{LiCoO_2}^0$ is the activity of Li$^+$ (mol m$^{-3}$) in the positive electrode at $t = 0$ (in equilibrium), and D_{Li} is the diffusion
and negative electrodes, i.e., $\eta_{\text{bat}} = \eta_{\text{LiCoO}_2}^{\text{eq}} - \eta_{\text{LiCoO}_2}^{\text{eq}}$.

Combined effects.— The equilibrium voltage of the Li-ion battery is the difference between the equilibrium voltage of the positive and negative electrodes, i.e., $E_{\text{bat}}^{\text{eq}} = E_{\text{LiCoO}_2}^{\text{eq}} - E_{\text{Li}^+}^{\text{eq}}$. The total battery overpotential (η_{total}) is a sum of three contributions, as shown by the following equation:

$$
\eta_{\text{total}} = \eta_{\text{LiCoO}_2}^{\text{eq}} + \eta_{\text{LiCoO}_2}^d + \eta_{\text{Li}^+}^{\text{eq}}.
$$

The total overpotential consists of three parts: the diffusion overpotential, the charge transfer overpotential, and the electrostatic potential gradient.

Experimental

A 10 µAh planar thin-film all-solid-state Li-ion battery was deposited using an in-house built equipment, comprising a radio frequency sputtering tool with 2 in. targets (13.56 MHz) and thermal/E-beam evaporation, both placed in a glove box containing an inert argon atmosphere. Care was taken that the base pressure before deposition was always less than 10⁻⁶ mbar. Hard masks were used for the definition of each of the active battery layers. As substrate, silicon covered with a histack of TiO₂/Pt (50 nm/250 nm) was used. For the cathode (LiCoO₂ target), a power of 60 W and a pressure of 8 × 10⁻⁶ bar O₂/Ar (4:6) were used to deposit 320 nm. Hereafter, the cathode was thermally annealed at 800°C for 10 min using rapid thermal anneal at a 60°C/min heating rate in order to obtain the high-T crystalline phase. Hereafter, a 1.5 µm thick
Li₃PO₄ layer was deposited using a power of 30 W using a Li₃PO₄ target (at a pressure of 15 × 10⁻⁶ bar Ar). Finally, 150 nm cobalt was deposited as the current collector at −5 Å/s via E-beam evaporation. The as-prepared battery was charged and discharged according to the following regime: constant current constant voltage (CCCV) charging with a 1.6 C-rate till the maximum voltage level of 4.2 V was reached, followed by a 30 min relaxation period and a current constant (CC) discharge. The following discharge rates were successively applied: 1.6, 3.2, 6.4, 12.8, 25.6, and 51.2 C. Cycling was performed on an 8-channel Biologic VMP3 battery tester equipped with a low current and impedance boards. The experimentally measured voltage profiles during charging with a 1.6 C-rate till the maximum voltage level of 4.2 V was reached, followed by a 30 min relaxation period and a current constant (CC) discharge. The following discharge rates were successively applied: 1.6, 3.2, 6.4, 12.8, 25.6, and 51.2 C. Cycling was performed on an 8-channel Biologic VMP3 battery tester equipped with a low current and impedance boards. The experimental data are obtained at room temperature, i.e., 25°C, the same temperature as used for the simulations.

Results and Discussion

Figure 2 shows the charge and discharge voltage curves as a function of time where, for convenience reasons, \(t = 0 \) corresponds to the start of each discharge cycle. It is remarkable to see that these thin-film batteries can be discharged with extremely high currents up to 51.2 C-rate.

figure 2

Figure 3 shows the same discharge curves but now plotted as a function of amount of extracted charge (\(Q_{out} \)), i.e., capacity density, together with the extrapolated equilibrium voltage curve (green line). Note that the equilibrium voltage of the battery is equal to that of the positive electrode as the voltage of the metallic Li electrode is 0 V vs Li/Li⁺, i.e., 0 V = \(E_{eq}^{bat} = E_{eq}^{LiCoO_2} \). The equilibrium voltage has been determined by regression extrapolation (see Chap. 4 in Ref. 31). The regression extrapolation was applied separately on the flat and steep parts of the equilibrium voltage curve. Figure 4 shows, as an example, the dependence of the voltage on the applied discharge current for six different values of \(Q_{out} \). A linear relationship between the current density and voltage is found for the low \(Q_{out} \) values up to 8 µAh cm⁻². At low state-of-charges, a nonlinear dependence is found, which can be well approximated by a quadratic regression model. The steep part of the equilibrium voltage curve has been obtained by applying a regression model to the set of \(Q_{out} \) and current densities. By extrapolating the currents to zero, the equilibrium voltage can be determined. Figure 5 shows the dependence of \(Q_{out} \)
on the applied discharge current at five different voltages. For all voltages, nonlinear dependencies between \(Q_{\text{out}} \) and the applied current are found, which have been approximated by a quadratic regression. \(Q_{\text{out}} \) can then be found by extrapolating toward zero current.

The difference between the equilibrium voltage and the discharge voltage is the overpotential. The dependence of the total experimental overpotential as a function of \(Q_{\text{out}} \) at various discharge rates is shown in Fig. 6. For all currents, a wide flat plateau is followed by a sharp decrease at the end of the discharge process.

Figure 7 shows the optimized simulations obtained with the applied model. Good agreement is obtained between the experimental results (blue dots) and the theoretical prediction (red lines) for all (dis)charge currents. The optimized parameters are listed in Table II.

Figure 8a shows the contributions of the various overpotential components during discharging at 3.2 C-rate. It is evident that the diffusion overpotential at the LiCoO\(_2\) electrode \((\eta_{\text{LiCoO}_2}^d) \) provides the largest contribution at the beginning of discharging, but reduces toward zero, except at the very end of the discharge process where it increases sharply due to the steep concentration gradient of Li ions in the cathode. The mass-transfer overpotential \((\eta_{\text{Li}}^m) \) of the electrolyte is the second in magnitude at the beginning of discharging, but dominates in the end. The charge transfer overpotential \((\eta_{\text{LiCoO}_2}^\text{ct}) \) is initially small but is growing significantly toward the end of the discharge process.

Similarly, a high discharge rate of 51.2 C (Fig. 8b) induces a high mass-transfer overpotential \((\eta_{\text{Li}}^m) \), which is slowly increasing upon discharging. This overpotential across the electrolyte is responsible for at least half of the total overpotential starting from the second half of the discharge process. The diffusion overpotential at the cathode \((\eta_{\text{LiCoO}_2}^d) \) contributes significantly in the beginning and at the very end of the discharge process. This behavior is in-line with the definition of the diffusion overpotential which is proportional to the derivative of the equilibrium voltage (see Diffusion in the electro-). Consequently, the overpotential is small in the second half of the discharge process, where the corresponding equilibrium voltage curve is rather flat and explodes sharply at the very end of the discharge process, where the equilibrium voltage drops rapidly. The simulated total overpotential agrees well with the experimentally determined overpotentials plotted in Fig. 5: in the case of a 51.2 C-rate discharge simulation, a wide overpotential plateau at about \(-0.2\) V is calculated which is in good agreement with the experimentally determined overpotential in Fig. 6 (black line). By carefully checking the various overpotential contributions at the end

Table II. Model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dimension</th>
<th>Estimated value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>nm</td>
<td>1500</td>
<td>Thickness of the electrolyte(^a)</td>
</tr>
<tr>
<td>(M)</td>
<td>nm</td>
<td>320</td>
<td>Thickness of the electrode(^b)</td>
</tr>
<tr>
<td>(A)</td>
<td>cm(^2)</td>
<td>1</td>
<td>Geometrical surface area(^c)</td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>mol m(^{-3})</td>
<td>(6.01 \times 10^4)</td>
<td>Total activity of Li atoms in LiPQ matrix(^d)</td>
</tr>
<tr>
<td>(k_e)</td>
<td>m(^3) mol(^{-1}) s(^{-1})</td>
<td>(0.90 \times 10^8)</td>
<td>Li(^+) ion recombination reaction rate</td>
</tr>
<tr>
<td>(\delta)</td>
<td>—</td>
<td>0.18</td>
<td>Fraction of free Li(^+) ions in equilibrium</td>
</tr>
<tr>
<td>(D_{\text{Li}}^d)</td>
<td>m(^2) s(^{-1})</td>
<td>(0.90 \times 10^{-15})</td>
<td>Diffusion coefficient for Li(^+) ions in the electrolyte</td>
</tr>
<tr>
<td>(D_{\text{n}}^d)</td>
<td>m(^2) s(^{-1})</td>
<td>(5.10 \times 10^{-15})</td>
<td>Diffusion coefficient for n(^-) in the electrolyte</td>
</tr>
<tr>
<td>(\alpha_{\text{LiCoO}_2}^{\text{ct}})</td>
<td>mol m(^{-3})</td>
<td>(2.33 \times 10^{-6})</td>
<td>Maximal activity of Li in the positive electrode</td>
</tr>
<tr>
<td>(D_{\text{Li}}^c)</td>
<td>m(^2) s(^{-1})</td>
<td>(1.76 \times 10^{-15})</td>
<td>Diffusion coefficient for Li in the positive electrode</td>
</tr>
<tr>
<td>(\alpha_{\text{LiCoO}_2}^{\text{ct}})</td>
<td>—</td>
<td>0.6</td>
<td>Charge transfer coefficient for the positive electrode</td>
</tr>
<tr>
<td>(k_1^t)</td>
<td>m(^3) mol(^{-0.6}) s(^{-1})</td>
<td>(5.1 \times 10^6)</td>
<td>Standard rate constant for positive electrode charge transfer reaction</td>
</tr>
</tbody>
</table>

\(^a\) Design parameters. \(^b\) Outcome of NDP analysis. \(^c\) Estimated from the design parameters and maximal capacity of the battery. All the remaining parameters are obtained from model optimization.
of the discharge process, it becomes clear that diffusion inside the LiCoO₂ electrode is the leading process, inducing the current interruption at the battery cutoff voltage of 3.0 V.

Figure 9 shows in more detail the development of the Li-ion concentration profile in the LiCoO₂ electrode upon discharging at a high 51.2 C-rate. Starting at t = 0, the system is at equilibrium and no concentration gradient has been built up yet. As soon as a discharge current is applied, a concentration profile is built up across the LiCoO₂ electrode, increasing more rapidly at the electrode/electrolyte interface. This is in good agreement with the Li-intercalation reaction Eq. 1, which indeed reveals an influx of Li ions into the positive electrode during discharging. The diffusion coefficient for Li in the electrode has been analyzed to be 1.76 × 10⁻¹⁵ m² s⁻¹, which also agrees well with the reported experimental results. After about 1 min, the current is switched off and the concentration profile quickly relaxes toward the equilibrium.

The evolution of the concentration profile of Li⁺ ions across the electrolyte upon high current discharging is shown in Fig. 10. Starting from a flat concentration profile at equilibrium, a steep increase of the Li⁺-concentration is found at the metallic Li/electrolyte interface (y = 0, see also Fig. 1b), while at the LiCoO₂/electrolyte interface (y = L) the concentration becomes rather low. When the discharge current is switched off after 1 min, the concentration profiles rapidly relax to their equilibrium value of 11 kmol m⁻³.

Figure 11 shows the development of the total overpotential (pink line) and the individual contributions of diffusion (red line) and migration (blue line) at 51.2 C-rate discharging. The equilibrium situation (t = 0) corresponds to a zero overpotential. When the current is switched on, a 40 mV voltage drop is instantaneously formed, which is fully carried by the electric field as no concentration gradient has been built up yet. This rapid initial increase is followed by a more steady increase of both migration and diffusion, in total amounting to 110 mV at the end of discharging. The thicknesses of the electrode (M) and the electrolyte (L) have been determined by scanning electron microscopy (SEM). The total number of Li in the Li₃PO₄ electrolyte has been analyzed by neutron depth profiling (NDP) to be a₀ = 6.01 × 10⁴ mol m⁻³. The simulations show that, in equilibrium, only about 18% of the Li atoms are mobile and that the Li-ion recombination reaction rate is moderately large (κ₀ = 0.9 × 10⁻⁸ m³ mol⁻¹ s⁻¹). Both diffusion coefficients are estimated to be of the order of 10⁻¹⁵ m² s⁻¹.

Figure 12 reviews the concentration profiles across the entire battery stack at three moments in time: directly preceding constant current-discharging (blue line), 20 s after 51.2 C-rate discharging has been commenced (red line), and after 50 s (pink line) just before discharging will be terminated. It can be concluded that before discharging no concentration profiles are present in both the electrode...
and the electrolyte, indeed implying that the battery is in the equilibrium state. However, as soon as the current is switched on, significant concentration gradients in both the electrode and the electrolyte are established, with significant accumulation at the metallic lithium electrode \((y = 0)\) and depletion at the electrolyte/cathode interface \((y = L)\). The lithium concentration in the positive electrode, conversely, is growing with time, in agreement with the main storage reaction Eq. 1. The simulated total overpotential corresponds to charge transfer resistances of the order of \(50–100 \ \Omega\) at the voltage plateau but obviously increases at the end of discharging. This is also in good agreement with the reported experimental results.\(^{18,19}\)

Figure 11. (Color online) Development of the overpotentials across the electrolyte layer during 51.2 C discharge: diffusion (red line), migration (blue line), and summation of those two, total (pink line).

Conclusions

A one-dimensional model has been applied to simulate the performance of all-solid-state Li-ion batteries. The model describes the electrode, electrolyte, and the interface between those elements. The proposed model provides a detailed information about the various diffusion and migration fluxes, concentration profiles, and the corresponding overpotential contributions, occurring across the electrode and electrolyte. The model provides good fits with the measurements, including discharge curves with high C-rates.

Acknowledgments

The authors thank Dr. H.T. Hintzen (Eindhoven University of Technology) and Dr. I. Kokal for their valuable discussions. The work has been supported by the European Union (FP7) within the framework of the Superion project.

Eindhoven University of Technology assisted in meeting the publication costs of this article.

References

Figure 12. (Color online) Concentration profiles in the complete battery stack before discharging (51.2 C-rate) has been commenced (blue), in the middle of the discharge process (red), and just before the discharge current will be terminated (pink). The electrolyte is at the left, the LiCoO\(_2\) electrode is indicated by the shaded area.