Broadband optical coherent frequency comb from a monolithic InGaAsP/InP extended cavity ring mode-locked laser


Published in:
Proceedings of the European Semiconductor Laser Workshop (ESLW 2013), 27 September 2013, Bristol, United Kingdom

Published: 01/01/2013

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
Broadband Optical Coherent Frequency Comb from a Monolithic InGaAsP/InP Extended Cavity Ring Mode-Locked Laser


COBRA, Eindhoven University of Technology, The Netherlands

E-mail: v.moskalenko@tue.nl

Passively mode-locked lasers (PMMLs) became a subject of interest not only due to the high applicability in the various fields requiring short optical pulses [1] but also as a broadband source for wavelength division multiplexing [3] and high-speed gas spectroscopy [4]. Monolithically integrated semiconductor PMMLs are of particular importance because of their compactness, robustness and low cost. In this work we report on the generation of one of the widest coherent optical combs produced by a quantum well (QW) ring PMLL. The device was realized on our Indium phosphide (InP) active-passive integration platform [2].

The ring laser (Fig. 1(a)) is formed with straight and curved passive waveguides, two semiconductor optical amplifiers (SOA), a reverse biased amplifier section that operates as a saturable absorber (SA) to support mode-locked operation, and a multimode interference coupler which couples out the clockwise and counter clockwise optical waves. The 30 µm long SA section is integrated between two SOA sections of equal length (375 µm). The ring cavity thus formed is symmetrical with respect to the SA section.

The widest optical spectrum we have observed is depicted in Fig. 1 (b). It is recorded with a 20 MHz resolution optical spectrum analyzer. The gain sections are DC biased at 154.8 mA total current and the SA reverse bias was -2 V. The spectrum exhibits a (longitudinal) multi-mode structure with a free spectral range of 19.889 GHz which corresponds to the fundamental resonance of the 4 mm long ring cavity. The spectrum features a 3dB bandwidth of 11.5 nm (17 nm when measured at -10 dB) and an extinction ratio (contrast ratio) from the background in excess of 20 dB.

![Sketch of symmetrical ring mode-locked laser](image)

The laser output pulses were characterized a.o. using a step heterodyne pulse characterization scheme [5]. In this technique, the PMLL optical pulse is combined with a tunable laser source (TLS) which is tuned over the spectrum of the PMLL. The beating frequencies between TLS and two PMLL longitudinal modes are detected using a fast photodiode and a real-time oscilloscope (50 GHz bandwidth). The phase and the amplitude profiles in time can be extracted from these data. A pulse duration of 900 fs and a chirp of 350 GHz were observed as shown in Fig. 1(c). In conclusion, we have demonstrated integrated PMMLs with a 3 dB bandwidth of 11.5 nm, which is the widest reported optical comb generated from QW based PMMLs. This work was supported by the NRC Photonics program and the PARADIGM FP7 project.

References


