
Citation for published version (APA):

DOI:
10.1063/1.4901731

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 30. Mar. 2019
D. F. Grossi, P. Smereka, J. G. Keizer, J. M. Ulloa, and P. M. Koenraad

Citation: Applied Physics Letters 105, 199901 (2014); doi: 10.1063/1.4901731
View online: http://dx.doi.org/10.1063/1.4901731
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/19?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Height control of self-assembled quantum dots by strain engineering during capping

Erratum: "Ballistic electron emission spectroscopy/microscopy of self-assembled InAs quantum dots of different sizes embedded in Ga As/Al Ga As heterostructure" [Appl. Phys. Lett. 92, 012101 (2008)]
Appl. Phys. Lett. 92, 109904 (2008); 10.1063/1.2892686

N incorporation into InGaAs cap layer in InAs self-assembled quantum dots
J. Appl. Phys. 98, 113525 (2005); 10.1063/1.2140891

1.3 μm lasers with AlInAs-capped self-assembled quantum dots

Spectral engineering of carrier dynamics in In(Ga)As self-assembled quantum dots
Appl. Phys. Lett. 78, 276 (2001); 10.1063/1.1337638

D. F. Grossi,1,a) P. Smereka,2 J. G. Keizer,1,3 J. M. Ulloa,4 and P. M. Koenraad1

1Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
2Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA
3Australian Research Council Centre of Excellence for Quantum Computation and Communications, School of Physics, University of New South Wales, Sydney 2052, Australia
4Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politecnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain

(Received 28 October 2014; accepted 3 November 2014; published online 12 November 2014)

[http://dx.doi.org/10.1063/1.4901731]

Two of the histograms in Fig. 3 have been accidentally swapped.1 The third histogram (blue bars) represents the height distribution for quantum dots (QDs) capped with InxGa1−xAs, where x = 0.05. The corresponding average height is 3.1 ± 0.4 nm. The second histogram (green bars) represents the height distribution for QD capped with InxGa1−xAs, where x = 0.10. The average height for this distribution is 4.0 ± 0.5 nm.

The correct image is shown below.

FIG. 3. Height distribution for capped QDs. Increasing the In concentration in the InxGa1−xAs capping layer increases the average height of the QDs.


a)d.grossi@tue.nl