Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutions
Cao, X.; Pop, I.S.

Published: 01/01/2014

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutions

by

X. Cao, I.S. Pop
Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutions

X. Cao1, I.S. Pop1,2

1 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
2 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Norway

Abstract. In this paper, we obtain the uniqueness of weak solutions for a two phase flow model in a porous medium. A particularity of the model is that the dynamic effects and hysteresis are included in the capillary pressure.

Keywords: Dynamic capillary pressure, two-phase flow, hysteresis, weak solution, uniqueness.

1 Introduction

We consider a mathematical model for two-phase flow in a porous medium. Two immiscible fluid phases are flowing through a porous medium occupying a bounded, connected domain $\Omega \subset \mathbb{R}^d$ ($d = 1, 2, 3$). Using $\bar{\Omega}$ and $\partial \Omega$ denote the closure and boundary of Ω. Let $T > 0$ be a given time. The phase pressures are denoted by p_w, p_n. The non-wetting phase saturation is s. We assume the porous medium is saturated by the two phases. Then from the Darcy law and mass conservation for each fluid give the system (see [1, 16])

$$\partial_t s - \nabla \cdot (k_n(s) \nabla p_n) - \nabla \cdot (k_n(s) \vec{g}) = 0,$$

$$-\partial_t s - \nabla \cdot (k_w(s) \nabla p_w) - \nabla \cdot (k_w(s) \vec{g}) = 0.$$ \hfill (1)

Here $\vec{g} \in \mathbb{R}^d$ is the gravity vector in direction $-\vec{e}_d = (0, ..., 0, -1) \in \mathbb{R}^d$. $k_n(s), k_w(s)$ are the permeabilities - two nonlinear functions depending on s. The system is closed by the relation between the phase pressures and saturation. Standardly, equilibrium models assume $p_w - p_n = p_c(s), p_c$ - decreasing with respect to s (see [12]). While experiments [3, 7, 17] have proved the limitation of this approach. Alternatively, models involving non-equilibrium effects are proposed in [2]:

$$p_n - p_w \in p_c(s) + \gamma(x) \text{sign}(\partial_t s) + \tau \partial_t s.$$ \hfill (3)
Here $\gamma \geq 0$, $\tau > 0$ are given and sign denotes the multi-valued function

$$\text{sign}(\xi) = \begin{cases}
1 & \text{if } \xi > 0, \\
-1 & \text{if } \xi < 0, \\
[-1,1] & \text{if } \xi = 0.
\end{cases} \quad (4)$$

The second term on the right in (3) models a play-type hysteresis (see [2, 18]), while the last one accounts for dynamic effects in the phase pressure difference (see [15]). Following [11], for $\tau > 0$, the multi-valued function $\Phi : \xi \mapsto \tau \xi + \gamma \text{sign}(\xi)$ can be inverted. Its inverse $\Psi : \Phi^{-1} : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function satisfying

$$0 \leq \Psi'(\xi, x) \leq 1/\tau. \quad (5)$$

With this notation, (3) transforms into

$$\partial_t s = \Psi(p_n - p_w - p_c(s), x). \quad (6)$$

The model (1), (2), (6) is complemented by initial and boundary conditions

$$s(0, \cdot) = s_0, \quad (7)$$

$$p_n = p_w = 0 \text{ at } \partial \Omega, \text{ for all } t \geq 0. \quad (8)$$

Remark 1.1: Other boundary conditions are possible, but for clarity, we restrict the presentation to (8).

The following assumptions are made:

- **A1:** The functions $k_w, k_n : \mathbb{R} \to \mathbb{R}$ are Lipschitz continuous. Further, $\delta, M_k > 0$ exist such that $\delta \leq k_w(s), k_n(s) \leq M_k < \infty$, for all $s \in \mathbb{R}$.

- **A2:** $p_c(\cdot) \in C^1(\mathbb{R})$ is increasing and Lipschitz continuous, there exist $m_p, M_p > 0$ such that $m_p \leq p_c'(s) \leq M_p$, for all $s \in \mathbb{R}$.

- **A3:** Ω is a $C^{1,\alpha}$ ($0 < \alpha \leq 1$) domain.

- **A4:** $\gamma(x) \in C^{0,1}(\bar{\Omega})$.

- **A5:** $s_0 \in C^{0,\alpha}(\bar{\Omega})$.

Remark 1.2: Commonly, the permeabilities encountered in the literatures ([4]) are

$$k_w(s) = (1 - s)^p, \quad k_n(s) = s^q, \quad \text{with } p, q > 1,$$

and

$$p_c(s) = (1 - s)^{-\frac{1}{\lambda}}, \quad \lambda > 1, \text{ for } s \in [0,1].$$

Then A1 is not satisfied when s approaches to 0 or 1. We consider here a regularized approximation of these functions.
2 Uniqueness

Existence results for the model considered here are proved in [11]. In this section, we provide a rigorous proof of the uniqueness of weak solutions to (1), (2), (6). We use common notations for function spaces, namely L^2, $W^{1,2}$, $W^{1,2}_0$, and Bochner space $L^2(0,T;X)$. Further, by $C > 0$, we have a generic constant. We follow [11] and consider weak solutions solving

Problem P_e: Given s_0 satisfying A5, find $p_n \in L^2(0,T;W^{1,2}_0(\Omega))$, $p_w \in L^2(0,T;W^{1,2}_0(\Omega))$ and $s \in W^{1,2}(0,T;L^2(\Omega))$, such that $s(\cdot,0) = s_0$ in Ω, and

\[
(\partial_t s, \phi) + (k_n(s) \nabla p_n, \nabla \phi) + (k_n(s) \overrightarrow{g}, \nabla \phi) = 0, \\
(-\partial_t s, \psi) + (k_w(s) \nabla p_w, \nabla \psi) + (k_w(s) \overrightarrow{g}, \nabla \psi) = 0, \\
(\partial_t s, \rho) = (\Psi(p_n - p_w - p_c(s), x), \rho),
\]

for any $\phi, \psi \in L^2(0,T;W^{1,2}_0(\Omega))$ and $\rho \in L^2(0,T;L^2(\Omega))$.

In [11], the hysteresis is modeled by considering (3) valid a.e.. This immediately implies that (6) holds a.e. and further (11). In this respect, the weak solution of Problem P_e is also a solution in [11]. The existence of weak solutions for Problem P_e has been proved in [11]. Here we show that weak solution is unique. Unique results for a similar model but without hysteresis are obtained in [5]. To this aim, some intermediate results are needed. We start with essential bounds for the gradients of p_n and p_w.

Theorem 2.1. Let (p_n, p_w, s) be a weak solution to Problem P_e. Then one has $\nabla p_n, \nabla p_w \in L^\infty((0,T] \times \Omega)$.

Proof. First we show that $\|\nabla p_n\|_{L^2(\Omega)} \in L^\infty(0,T)$ and $\|\nabla p_w\|_{L^2(\Omega)} \in L^\infty(0,T)$.

Taking $\phi = p_n$ in (9), $\psi = p_w$ in (10) and adding the resulting equations give

\[
(\partial_t s, p_n - p_w) + \|\sqrt{k_n(s)} \nabla p_n\|_{L^2(\Omega)}^2 + \|\sqrt{k_w(s)} \nabla p_w\|_{L^2(\Omega)}^2 + (k_n(s) \overrightarrow{g}, \nabla p_n) + (k_w(s) \overrightarrow{g}, \nabla p_w) = 0. \\
\]

For the first term of (12), we note that (3) holds almost everywhere. Then since $\text{sign}(\xi) \xi \geq 0$ for any $\xi \in \mathbb{R}$, one has

\[
\int_\Omega \partial_t s(p_n - p_w) \geq \int_\Omega \tau |\partial_t s|^2 dx + \int_\Omega p_c(s) \partial_t s dx \geq \frac{\tau}{2} \|\partial_t s\|_{L^2(\Omega)}^2 - \frac{1}{2\tau} \int_\Omega |p_c(s)|^2 dx.
\]

Further, since $s \in L^\infty(0,T;L^2(\Omega))$ (see [11, 14]), by using the Cauchy-Schwarz inequality, A1 and A2, (12) gives

\[
\|\nabla p_n\|_{L^2(\Omega)}^2 + \|\nabla p_w\|_{L^2(\Omega)}^2 \leq C, \quad \text{for almost every } t.
\]

Then substituting (6) into (1) and (2) respectively, one has

\[
- \nabla \cdot (k_n(s) \nabla p_n) = -\Psi(p_n - p_w - p_c(s), x) + \nabla \cdot (k_n(s) \overrightarrow{g}),
\]

(15)
\[-\nabla \cdot (k_w(s)\nabla p_w) = \Psi(p_n - p_w - p_c(s), x) + \nabla \cdot (k_w(s)\overline{\gamma}). \tag{16}\]

Using Theorem 14.1 in [13] gives for almost every \(t \),
\[
\|p_n\|_{C^{0,\alpha}(\bar{\Omega})} + \|p_w\|_{C^{0,\alpha}(\bar{\Omega})} \leq C. \tag{17}\]

Further, from (6), for almost every \(x, y \in \Omega \ (x \neq y) \) and \(t > 0 \), \(\zeta \) and \(\tilde{\zeta} \) depending on \(x, y, t \) exist, such that
\[
\partial_t \frac{s(t, x) - s(t, y)}{|x - y|^\alpha} = \frac{\Psi((p_n - p_w - p_c(s))(t, x), x) - \Psi((p_n - p_w - p_c(s))(t, y), y)}{|x - y|^\alpha} \]
\[
= \frac{\Psi(p_n(t, x) - p_w(t, x) - p_c(s(t, x)), x) - \Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), x)}{|x - y|^\alpha} \]
\[
+ \frac{\Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), x) - \Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), y)}{|x - y|^\alpha} \]
\[
= \Psi' (\zeta, x) \left(\frac{p_n(t, x) - p_n(t, y)}{|x - y|^\alpha} - \frac{p_w(t, x) - p_w(t, y)}{|x - y|^\alpha} - \frac{p_c(s(t, x) - p_c(s(t, y))}{|x - y|^\alpha} \right) \]
\[
+ \frac{\Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), x) - \Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), y)}{|x - y|^\alpha} \]
\[
= \Psi' (\zeta, x) \left(\frac{p_n(t, x) - p_n(t, y)}{|x - y|^\alpha} - \frac{p_w(t, x) - p_w(t, y)}{|x - y|^\alpha} - \frac{p_c(\tilde{\zeta}) \cdot s(t, x) - s(t, y)}{|x - y|^\alpha} \right) \]
\[
+ \frac{\Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), x) - \Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), y)}{|x - y|^\alpha}. \tag{18}\]

Define
\[
\Gamma(t, x, y) = \frac{\Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), x) - \Psi(p_n(t, y) - p_w(t, y) - p_c(s(t, y)), y)}{|x - y|^\alpha}. \tag{19}\]

By A2 - A4, and since \(p_n, p_w \in C^{0,\alpha}(\bar{\Omega}) \), for almost every \(t \), we have
\[
|\Gamma(t, x, y)| + \sup_{x, y \in \Omega, x \neq y} \frac{|p_n(t, x) - p_n(t, y)|}{|x - y|^\alpha} + \sup_{x, y \in \Omega, x \neq y} \frac{|p_w(t, x) - p_w(t, y)|}{|x - y|^\alpha} \leq C. \tag{20}\]

Defining \(w : (0, T] \times \Omega^2 \to \mathbb{R} \) as
\[
w = \frac{s(t, x) - s(t, y)}{|x - y|^\alpha}, \tag{21}\]
\(w \) satisfies
\[
\partial_t w = fw + g, \tag{22}\]
where \(f(t, x) = -\Psi'(\zeta, x) \cdot p'_c(\zeta) \) and \(g(t, x) = \Psi'(\zeta, x)(\frac{p_n(t, x) - p_n(t, y)}{|x-y|^\alpha} - \frac{p_w(t, x) - p_w(t, y)}{|x-y|^\alpha}) + \Gamma(t, x, y) \). Note that, (5), (20) and A2 give \(f, g \in L^\infty((0, T] \times \tilde{\Omega}) \).

Multiplying (22) by \(w \) and integrating from 0 to \(t \) leads to

\[
\frac{1}{2} w^2(t) = \int_0^t f w^2(z) dz + \int_0^t g w(z) dz + \frac{1}{2} \left(\frac{s_0(x) - s_0(y)}{|x-y|^\alpha} \right)^2.
\]

(23)

Since \(f, g \in L^\infty((0, T] \times \tilde{\Omega}) \) and \(s_0 \in C^{0,\alpha}(\Omega) \) from A5, we have

\[
w^2(t) \leq C(1 + \int_0^t w^2 dz), \quad \text{for every } t.
\]

(24)

Using Gronwall’s inequality yields \(w \leq C \), implying that

\[
\frac{|s(t, x) - s(t, y)|}{|x-y|^\alpha} \leq C, \quad \text{for almost every } x, y \in \Omega, \text{ for every } t.
\]

(25)

Let \(\Omega_c \) be the subset of \(\Omega \), where (25) holds everywhere. Clearly, \(\Omega \setminus \Omega_c \) is zero measured. For any \(x \in \Omega \setminus \Omega_c \), we consider a sequence \(\{x_n\}_{n \in \mathbb{N}} \in \Omega_c \) converging to \(x \), and define

\[
s(t, x) = \lim_{n \to \infty} s(t, x_n).
\]

(26)

In the view of (25), \(s(x) \) does not depend on the choice of \(\{x_n\}_{n \in \mathbb{N}} \). With this choice, \(s \in C^{0,\alpha}(\Omega) \) (see [8]).

Finally, by Theorem 8.33 and Corollary 8.35 in [10] (see also [6]), we get

\[
|p_n|_{1,\alpha} \leq C(|p_n|_0 + |\Psi|_0 + |k_n(s)|_{0,\alpha}),
\]

(27)

\[
|p_w|_{1,\alpha} \leq C(|p_w|_0 + |\Psi|_0 + |k_w(s)|_{0,\alpha}),
\]

(28)

implying \(\nabla p_n, \nabla p_w \in L^\infty((0, T] \times \tilde{\Omega}) \).

\(\square \)

Theorem 2.2. Problem \(P_e \) has at most one solution.

Proof. Let \((u, p^u_n, p^w_n) \) and \((v, p^v_n, p^v_w) \) be the two solutions of Problem \(P_e \), then one has

\[
(\partial_t (u - v), \phi) + (k_n (v) \nabla (p^u_n - p^w_n), \nabla \phi) + ((k_n (u) - k_n (v)) \nabla p^u_n, \nabla \phi) + ((k_n (u) - k_n (v)) \nabla p^w_n, \nabla \phi) = 0,
\]

(29)

\[
- (\partial_t (u - v), \psi) + (k_w (v) \nabla (p^u_n - p^w_n), \nabla \psi) + ((k_w (u) - k_w (v)) \nabla p^u_n, \nabla \psi) + ((k_w (u) - k_w (v)) \nabla p^w_n, \nabla \psi) = 0,
\]

(30)

and

\[
(\partial_t (u - v), \rho) = (\Psi(p^u_n - p^w_n - p_c (u), x) - \Psi(p^v_n - p^w_n - p_c (v), x), \rho),
\]

(31)
Further, let \((\phi, \psi)\). Since \(\Psi\) is Lipschitz, for almost every \((x, t) \in \Omega_T\), a \(\xi\) exists, such that
\[
(\partial_t (u - v), \rho) = (\Psi'(\xi, x)((p_{n}^u - p_{n}^v) - (p_{w}^u - p_{w}^v) - (p_c(u) - p_c(v))), \rho).
\]
Further, let \((G_{u-v}, \tilde{G}_{u-v})\) be the weak solution pair of the elliptic system (see [5, 9]),
\[
-\nabla \cdot (k_n(v)\nabla G_{u-v}) + \Psi'(\xi, x)(G_{u-v} + G_{u-v}) = \Psi'(\xi, x)(u - v),
\]
\[
-\nabla \cdot (k_w(v)\nabla \tilde{G}_{u-v}) + \Psi'(\xi, x)(G_{u-v} + \tilde{G}_{u-v}) = \Psi'(\xi, x)(u - v),
\]
where
\[
G_{u-v}, \tilde{G}_{u-v} = 0, \quad \text{at} \partial \Omega.
\]
The existence and uniqueness follow the Lax-Milgram lemma. Further, one has
\[
(\Psi'(\xi, x)G_{u-v}, \lambda) + (\Psi'(\xi, x)G_{u-v}, \lambda) + (k_n(v)\nabla G_{u-v}, \nabla \lambda) = (\Psi'(\xi, x)(u - v), \lambda),
\]
for any \(\lambda, \tilde{\lambda} \in W^{1,2}_0(\Omega).
Using the properties of \(\Psi, k_w, k_n\), one immediately gets
\[
\|G_{u-v}\|^2_{W^{1,2}(\Omega)} \leq C\|u - v\|^2_{L^2(\Omega)}, \quad \text{and} \quad \|	ilde{G}_{u-v}\|^2_{W^{1,2}(\Omega)} \leq C\|u - v\|^2_{L^2(\Omega)}.
\]
Taking \(\phi = G_{u-v}\) in (29), and \(\psi = \tilde{G}_{u-v}\) in (30), one has
\[
(\partial_t (u - v), G_{u-v}) + (k_n(v)\nabla (p_{n}^u - p_{n}^v), \nabla G_{u-v})
+ ((k_n(u) - k_n(v))\nabla p_{n}^u, \nabla G_{u-v}) + ((k_n(u) - k_n(v))\nabla \tilde{g}, \nabla G_{u-v}) = 0,
\]
\[
-(\partial_t (u - v), \tilde{G}_{u-v}) + (k_w(v)\nabla (p_{w}^u - p_{w}^v), \nabla \tilde{G}_{u-v})
+ ((k_w(u) - k_w(v))\nabla p_{w}^u, \nabla \tilde{G}_{u-v}) + ((k_w(u) - k_w(v))\nabla \tilde{g}, \nabla \tilde{G}_{u-v}) = 0.
\]
Choosing \(\lambda = p_{n}^u - p_{n}^v\) in (36) and \(\tilde{\lambda} = p_{w}^u - p_{w}^v\) in (37) gives
\[
(k_n(v)\nabla G_{u-v}, \nabla (p_{n}^u - p_{n}^v)) = (\Psi'(\xi, x)(u - v), p_{n}^u - p_{n}^v) - (\Psi'(\xi, x)G_{u-v}, p_{n}^u - p_{n}^v)
- (\Psi'(\xi, x)G_{u-v}, p_{n}^u - p_{n}^v),
\]
Substitute (41) into (39) and (42) into (40), we find that

\[
(k_w(v)\nabla \tilde{G}_{u-v}, \nabla (p_w^u - p_w^v)) = (\Psi'(\xi, x)(u-v), p_w^u - p_w^v) - (\Psi'(\xi, x)G_{u-v}, p_w^u - p_w^v)
- (\Psi'(\xi, x)\tilde{G}_{u-v}, p_w^u - p_w^v).
\]

Substituting the above two equations into (46) leads to

\[
-(\partial_t(u-v), \tilde{G}_{u-v}) - (\Psi'(\xi, x)G_{u-v}, p_w^u - p_w^v) - (\Psi'(\xi, x)G_{u-v}, p_n^u - p_n^v)
- (\partial_t(u-v), G_{u-v}) - (\Psi'(\xi, x)G_{u-v}, p_n^u - p_n^v)
+ (\Psi'(\xi, x)(u-v), p_w^u - p_w^v) + ((k_n(u) - k_n(v))\nabla p_n^u, \nabla G_{u-v})
+ ((k_n(u) - k_n(v)) \tilde{g}, \nabla G_{u-v}) = 0,
\]

(43)

Taking \(\rho = u - v \) into (32) yields

\[
(\Psi'(\xi, x)(p_n^u - p_n^v), u - v) = (\partial_t(u-v), u-v) + (\Psi'(\xi, x)(p_w^u - p_w^v), u-v)
+ (\Psi'(\xi, x)(p_c(u) - p_c(v)), u-v).
\]

(45)

Using this into (43) and subtracting (44), the resulting equation gives

\[
(\partial_t(u-v), G_{u-v}) + (\Psi'(\xi, x)G_{u-v}, p_w^u - p_w^v) - (\Psi'(\xi, x)G_{u-v}, p_n^u - p_n^v)
+ (\partial_t(u-v), \tilde{G}_{u-v}) + (\Psi'(\xi, x)\tilde{G}_{u-v}, p_w^u - p_w^v) - (\Psi'(\xi, x)\tilde{G}_{u-v}, p_n^u - p_n^v)
+ (\partial_t(u-v), u-v) + (\Psi'(\xi, x)(p_c(u) - p_c(v)), u-v)
+ ((k_n(u) - k_n(v))\nabla p_n^u, \nabla G_{u-v}) - ((k_n(u) - k_n(v))\nabla p_n^v, \nabla \tilde{G}_{u-v})
+ ((k_n(u) - k_n(v)) \tilde{g}, \nabla G_{u-v}) - ((k_n(u) - k_n(v)) \tilde{g}, \nabla \tilde{G}_{u-v}) = 0.
\]

(46)

Further, taking \(\rho = G_{u-v} \) and \(\rho = \tilde{G}_{u-v} \) in (32) respectively give

\[
(\partial_t(u-v), G_{u-v}) + (\Psi'(\xi, x)G_{u-v}, p_w^u - p_w^v) - (\Psi'(\xi, x)G_{u-v}, p_n^u - p_n^v)
= - (\Psi'(\xi, x)G_{u-v}, p_c(u) - p_c(v)),
\]

(47)

and

\[
(\partial_t(u-v), \tilde{G}_{u-v}) + (\Psi'(\xi, x)\tilde{G}_{u-v}, p_w^u - p_w^v) - (\Psi'(\xi, x)\tilde{G}_{u-v}, p_n^u - p_n^v)
= - (\Psi'(\xi, x)\tilde{G}_{u-v}, p_c(u) - p_c(v)).
\]

(48)

Substituting the above two equations into (46) leads to

\[
(\partial_t(u-v), u-v) - (\Psi'(\xi, x)G_{u-v}, p_c(u) - p_c(v)) - (\Psi'(\xi, x)\tilde{G}_{u-v}, p_c(u) - p_c(v))
+ (\Psi'(\xi, x)(u-v), p_c(u) - p_c(v)) + ((k_n(u) - k_n(v))\nabla p_n^u, \nabla G_{u-v})
- ((k_n(u) - k_n(v))\nabla p_n^v, \nabla \tilde{G}_{u-v}) + ((k_n(u) - k_n(v)) \tilde{g}, \nabla G_{u-v})
- ((k_n(u) - k_n(v)) \tilde{g}, \nabla \tilde{G}_{u-v}) = 0.
\]

(49)
Integrating (49) from 0 to \(\tilde{t} \), for any \(\tilde{t} \in (0, T] \). Since \(\nabla p_n, \nabla p_w \in L^\infty((0, T] \times \bar{\Omega}) \), by using (5), A1, A2 and (38), we obtain

\[
\|(u - v)(\cdot, \tilde{t})\|^2_{L^2(\Omega)} \leq C \int_0^{\tilde{t}} \|(u - v)(\cdot, t)\|^2_{L^2(\Omega)} dt.
\] (50)

By Gronwall’s inequality, \(\|(u - v)(\cdot, \tilde{t})\|^2_{L^2(\Omega)} = 0 \). Since \(\tilde{t} \) is arbitrary, this gives \(u = v \) a.e. in \(\Omega \) and for all \(t \in (0, T] \).

To show that \(p_n^u = p_n^v, p_w^u = p_w^v \), we use (29) and (30). Since \(u = v \), one has

\[
(k_n(u) \nabla(p_n^u - p_n^v), \nabla \phi) = 0,
\] (51)

\[
(k_w(u) \nabla(p_w^u - p_w^v), \nabla \psi) = 0,
\] (52)

for any \(\phi, \psi \in W_0^{1,2}(\Omega) \), for almost every \(t \).

The rest of the proof follows straightforwardly by taking \(\phi = p_n^u - p_n^v, \psi = p_w^u - p_w^v \), and recalling that \(p_n^u, p_n^v, p_w^u, p_w^v \) have equal traces on \(\partial \Omega \).

3 Conclusion

In this paper, we have proved the uniqueness of weak solutions to a non-degenerate system which models two-phase flow in porous media including hysteresis and dynamic effects in the capillary pressure. In doing so, we use arguments based on Green’s function.

Acknowledgment. We thank Prof. Dr. Ben Schweizer, Dr. Agnes Lamacz (both Dortmund) for the helpful discussions. X. Cao would like to thank CSC (China Scholarship Council) for the financial support. The authors are members of the International Research Training Group NUPUS funded by the German Research Foundation DFG (GRK 1398) and The Netherlands Organization for Scientific Research NWO (DN 81-754).

References

Previous Publications in This Series:

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-24</td>
<td>C. Bringedal, I. Berre, F.A. Radu, I.S. Pop</td>
<td>Pore scale model for non-isothermal flow and mineral precipitation and dissolution in a thin strip</td>
<td>Aug. '14</td>
</tr>
<tr>
<td>14-26</td>
<td>X. Cao, I.S. Pop</td>
<td>Uniqueness of weak solutions for a pseudo-parabolic equation modeling two phase flow in porous media</td>
<td>Sept. '14</td>
</tr>
<tr>
<td>14-27</td>
<td>M.E. Hochstenbach, L. Reichel, G. Rodriguez</td>
<td>Regularization parameter determination for discrete ill-posed problems</td>
<td>Sept. '14</td>
</tr>
<tr>
<td>14-28</td>
<td>X. Cao, I.S. Pop</td>
<td>Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutions</td>
<td>Sept. '14</td>
</tr>
</tbody>
</table>