Intensified heat transfer in modulated rotating Rayleigh-Bénard convection

Citation for published version (APA):

DOI:
10.1016/j.ijheatfluidflow.2014.04.007

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 27. Mar. 2020
Intensified heat transfer in modulated rotating Rayleigh–Bénard convection

Bernard J. Geurts a,b,⇑, Rudie P.J. Kunnen b

a Multiscale Modeling and Simulation, Faculty EEMCS, University of Twente, P.O. Box 271, 7500 AE Enschede, The Netherlands
b Fluid Dynamics Laboratory, Faculty of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Article info

Article history:
Available online 14 June 2014

Keywords:
Rayleigh–Bénard convection
Direct numerical simulation
Modulated rotation
Nusselt number
Turbulence

Abstract

Heat transfer in a Rayleigh–Bénard configuration consisting of a vertical cylinder, which is rotating about its axis, can be intensified considerably when the rotation rate is modulated harmonically in time. Such time-dependent rotation introduces an Euler force into the governing equations which leads to a particular modification of the flow that is shown to support a Nusselt number (Nu) that is considerably higher than in case of constant rotation. We use direct numerical simulation of the incompressible Navier–Stokes equations to perform a comprehensive parameter study of the flow-structuring and associated heat transfer investigating primarily the effect of variations in the frequency with which the rotation rate varies. We consider flow in an upright cylinder of unit aspect ratio which is heated from below and cooled at the top. At sufficiently strong Euler forces the temporal variation of Nu shows a striking dynamics with periods of gradual increase in Nu with more rapid oscillations superimposed, next to rather catastrophic events in which the entire flow-structure that supported high levels of Nu collapses entirely and it returns to a value more similar to that attained at steady rotation. During periods of oscillatory build-up of Nu, high levels of turbulence gradually become more pronounced from the outer cylinder wall inward and a gradually stronger thermal column arises along the centreline of the cylinder. This flow structure can support Nu up to 250% larger than without rotation, a value otherwise achievable only by employing phase transition.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many flows in nature and technology are simultaneously driven by buoyant convection as well as influenced by rotation. Typical examples are found in the large-scale geophysical flows in the atmosphere and the oceans on our Earth. Understanding these is essential for predicting heat and mass transfer, and hence essential for weather and climate predictions. Also in many technological applications buoyancy and rotation are key mechanisms, e.g., in cooling or controlled crystal growth. A simple model that captures the dynamic consequences arising from interactions between these central mechanisms is found in rotating Rayleigh–Bénard convection: a fluid layer enclosed vertically between parallel rotating walls is heated from below and cooled from above (Stevens et al., 2013). In recent years much research was devoted to turbulent convection in Rayleigh–Bénard configurations rotating about the vertical axis. This volume of work deals with experimental, theoretical and simulation studies into effects on the heat transfer at constant rotation rate. Here we extend this study with an hitherto unexplored aspect, i.e., that of effects on the heat transfer due to time-varying rotation rate.

We focus on the question to what extent time-modulated rotation affects the heat transport properties of a cylindrical Rayleigh–Bénard system. A first, unique physical experiment was carried out by Niemela et al. (2010) producing interesting results (Niemela et al., 2010). Heat transport measurements at constant as well as at periodically varied rotation rates were conducted in a wide range of physical conditions, with cryogenic helium gas as working fluid. While no enhancement of heat transport was observed at constant rotation rate, the use of time-periodic variations marked a sharp transition toward much more efficient transport of heat. In these experiments the heat transfer could be measured but no access to associated flow structuring was available. The current numerical study addresses a lower Rayleigh number and adopts water as working fluid. We also establish a significant increase in the heat transport efficiency under time-modulated rotation conditions. At the same time the direct numerical simulations are...
intended to qualitatively complement the experimental work and also shed light on the fluid-mechanical structures that arise during periods of enhanced heat transfer.

The inclusion of a time-dependent rotation rate expressed by the so-called Euler force may qualitatively alter the flow from a condition of a domain filling large-scale circulation (LSC; occuring at low constant rotation rates) or dispersed local thermal plumes (at high constant rotation rates) (Stevens et al., 2013; Kunnen, 2008; Kunnen et al., 2008, 2006, 2010; Stevens et al., 2009), to a more or less segregated situation in which a pronounced thermal column forms along the centreline of the domain and highly sheared structures appear in the boundary layer near the vertical sidewalls. The ability to manipulate these flow structures allows to influence small-scale mixing (Geurts, 2001) and heat transfer characteristics. A dominant Euler force yields very complex flow dynamics in which a long-time build-up of thermal structures arises in an oscillating manner, interspersed by a kind of abrupt and considerable collapse with associated strong reduction of the thermal transport efficiency, as quantified by the Nusselt number Nu. This presents an interesting challenge in physical control of such turbulent flow (Kuczaj et al., 2006), aimed at building up high-Nu flow structures by modulated rotation, but avoiding the Nu-collapse.

The organisation of this paper is as follows. We first present the governing equations and discuss the numerical method in Section 2. Subsequently, in Section 3, the effect of time-modulated rotation is shown in terms of the changes in the turbulent flow structures that arise. The consequences for the transport of heat are discussed afterwards in Section 4 and the paper is completed with concluding remarks in Section 5.

2. Governing equations and numerical method

The main aspects governing flow in a rotating Rayleigh–Bénard cylinder are (i) the effect of buoyancy associated with differences in the mass density arising from differences in the temperature and (ii) the rotation itself, which will be expressed in terms of the commonly included Coriolis force, which expresses the value of the rotation rate, and the less familiar Euler force, which arises due to temporal variations in the rotation rate. In this section we outline the governing equations and describe the mathematical model, including the domain and boundary conditions. Subsequently, we pay attention to the numerical method that was adopted and motivate the spatial resolution that was used for the direct numerical simulation.

We consider cylindrical domains filled with water, of height H and diameter $D = H$, i.e., the aspect ratio $l = D/H = 1$. The domain is allowed to rotate about the vertical (z) axis with rotation rate $\Omega(t) = \Omega(t)\hat{z}$ where \hat{z} denotes the unit vector in the z direction. We consider the flow in a co-rotating coordinate frame $(\hat{x}, \hat{y}, \hat{z})$ rotating with $\Omega(t)$ relative to the inertial frame $(\hat{X}, \hat{Y}, \hat{Z})$. The relation between the velocity in the inertial frame of reference (subscript ‘I’) and that in the rotating frame (subscript ‘R’) can be expressed as

$$\frac{d\hat{r}}{dt}_I = \frac{d\hat{r}}{dt}_R + (\Omega(t) \times \hat{r})$$

where the position vector is expressed as $\hat{r} = r_x \hat{x} + r_y \hat{y} + r_z \hat{z}$. For the acceleration one may derive

$$\frac{d^2\hat{r}}{dt^2}_I = \underbrace{\frac{d^2\hat{r}}{dt^2}_R}_+ \underbrace{2\Omega(t) \times \frac{d\hat{r}}{dt}_R}_\text{Coriolis} + \underbrace{\Omega(t) \times \Omega(t) \times \hat{r}}_\text{centrifugal} + \underbrace{\frac{dx(t)}{dt} \times \hat{r}}_\text{Euler}$$

in which we explicitly distinguished the Coriolis, centrifugal and Euler forces respectively. In incompressible flow it is common to absorb the centrifugal force into the pressure term. For rotation about the z axis the Euler force can be shown to yield a contribution to the circumferential momentum transport equation only, while for turbulent 3D flow the Coriolis force is making itself felt more in all coordinate directions.

In the Boussinesq approximation the governing equations that describe incompressible, buoyant flow in a co-rotating frame of reference can be written as $\nabla \cdot \mathbf{u} = 0$ for the conservation of mass, and

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + g\alpha T \hat{z} + \nu \nabla^2 \mathbf{u} - 2\Omega(t) \hat{z} \times \mathbf{u} - r \times \frac{d\Omega(t)}{dt} \hat{\theta}$$

Moreover, the transport of heat is characterised by an advection–diffusion equation, given by

$$\partial_t T + (\mathbf{u} \cdot \nabla) T = k \nabla^2 T$$

In this formulation, we absorbed the centrifugal contribution into ∇p where p denotes the total dynamic pressure. Moreover, \mathbf{u} denotes the velocity field, g the gravitational acceleration, α the thermal expansion coefficient, T the temperature, ν the kinematic viscosity and k the thermal diffusivity.

The time-modulation of the rotation rate is taken in this paper as

$$\Omega(t) = \Omega_0 + \Delta \Omega \sin(\omega t)$$

where we denote the mean rotation rate by Ω_0, the depth of modulation by $\Delta \Omega$ and the frequency of modulation by ω. This harmonic variation of the rotation rate is a first choice of perturbation protocol. More general acceleration procedures can be selected in order to introduce specific modulation patterns and indirectly achieve some control over the transport properties in the flow. The formulation as given in (5) can equivalently be expressed in terms of three ‘Rossby numbers’. In fact, multiplying (5) by $2H/\Omega$ we find

$$\frac{1}{R^0_0} = \frac{1}{R^0_0} + \frac{1}{R^0_0} \sin\left(\frac{t}{2R^0_0}\right)$$

where

$$R^0_0 = \frac{U}{2H\Omega_0}; \quad R^0 = \frac{U}{2H\Omega}; \quad R^0_m = \frac{U}{2H\Delta \Omega}$$

These parameters can be varied independently, giving detailed control over the precise flow regime that dominates the turbulent transport. In this paper the primary interest lies with the dynamics induced by the Euler force and hence we will consider variation of R^0_m, keeping the ‘mean’ R^0 and ‘modulation depth’ R^0_m fixed. The specific choice for R^0_0 and R^0_m will be motivated momentarily.

It is convenient to present the final computational model in non-dimensional form. We use the convective velocity scale $U = \sqrt{g\alpha \Delta T H}$, the temperature scale ΔT, which is the temperature difference between the bottom and the top wall, and the length scale H. The following dimensionless groups can be used to characterise the flow: $R = (g\alpha \Delta T H)/(\nu k)$ the Rayleigh number, $\sigma = U/\nu k$ the Prandtl number, and R^0_0, R^0, R^0_m the Rossby numbers. The final dimensionless form of the governing equations can be expressed as:

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \sqrt{\frac{\Omega_0}{R}} \nabla^2 \mathbf{u}$$

$$- \frac{1}{R^0_0} \sin\left(\frac{t}{2R^0_0}\right) \hat{z} \times \mathbf{u} - \frac{1}{4R^0_0 R^0_m} \cos\left(\frac{t}{2R^0_0}\right)$$
These equations are defined in a cylindrical domain of equal height and diameter H. The boundary conditions are taken as no-slip \(u = 0 \) at all the walls of the domain and, \(T = 1 \) at the bottom plate, \(T = 0 \) at the top plate and adiabatic conditions \(\partial T = 0 \) at the sidewall.

The dynamics of turbulent flow in a rotating Rayleigh–Bénard cylinder under time-modulated conditions is investigated using direct numerical simulations (DNS). These are based on an extension of the method by Verzicco and Orlandi (1996) and Oresta et al. (2007) to also include the Euler force. We consider as working fluid pure water with Prandtl number \(\text{Pr} = 6.4 \) and investigate turbulent flow at \(Ra = 10^6 \), identical to the value used in the study of Kunnen et al. (2008, 2010), in order to facilitate comparison with the constant rotation case.

The rate at which heat can be transferred in a Rayleigh–Bénard setting has been subject of intensive research. A main feature of the cylinder under time-modulated conditions is investigated using the method by Verzicco and Orlandi (1996) and Oresta et al. (2007) to also include the Euler force. We consider as working fluid pure water with Prandtl number \(\text{Pr} = 6.4 \) and investigate turbulent flow at \(Ra = 10^6 \), identical to the value used in the study of Kunnen et al. (2008, 2010), in order to facilitate comparison with the constant rotation case.

For the current conditions, i.e., \(Ra = 10^3 \) and \(\text{Pr} = 6.4 \), when either increasing or decreasing the rotation rate relative to \(R_0 = 2.45 \), the Nusselt number was found to reduce approximately to the non-rotating value at ‘upper’ and ‘lower’ Rossby numbers of \(\approx 5 \) and \(\approx 0.1 \), respectively. Although the Nusselt numbers are virtually identical at the ‘upper’ and ‘lower’ Rossby numbers the flow-structures are markedly different. A domain-filling large-scale circulation develops at the upper Rossby number, i.e., at slow rotation. In contrast, many strongly localised thermal plumes characterise the flow at the lower Rossby number. In this paper we will adopt \(R_0 = 2.45 \) and \(R_0' = 2.55 \) in order to be able to ‘transition’ harmonically between both flow structures with a frequency that is characterised by \(R_0''. \) With this choice of Rossby numbers the direction of rotation is always maintained the same, only the value of the rotation rate is altered in time. The latter parameter will be varied systematically and the consequences for the flow structuring and the heat transfer will be quantified.

The spatial resolution is taken as \((n_x, n_y, n_z) = (385, 193, 385)\), which was found adequate to also resolve the finer scales of the flow associated with the boundary layers that develop near the two end plates and the side walls (Kunnen et al., 2009; Shishkina et al., 2010). We work in cylindrical coordinates in which case several terms in the governing equations possess a factor \(1/r \) with \(r \) the radial coordinate. These terms need special treatment near the cylinder axis (Verzicco and Orlandi, 1996). We solve therefore equations for the state vector \((ru, u_r, u_z)\) on a staggered grid which avoids the centreline. The equations are discretised by a central finite-difference formulation of second order accuracy. The discretisation method numerically preserves kinetic energy for inviscid conditions. The method was parallelised using OpenMP.

In the next Section we consider the flow structure that develops due to the time-dependent rotation rates.

3. Qualitative flow-structure changes under modulated rotation conditions

We first present illustrations of the flow at constant rotation rate, providing a point of reference for the discussion of alterations in the appearance of the flow due to time-dependent rotation rates.

Simulations at various constant rotation rates show that the organisation of the flow into coherent structures is strongly dependent on rotation (Kunnen et al., 2008, 2010). For low rotation rates the domain-filling large-scale circulation (LSC) is the dominant feature. At larger rotation rates an irregular, rapidly changing array of vertically oriented vortices is found. This is illustrated in Fig. 1. The turbulence intensity is reduced by strong rotation, compared to the non-rotating case, and the vertical inhomogeneity increases, reflecting the consequences of the thermal wind balance (Kunnen et al., 2008, 2010). In fact, the slender vortical structures at

Fig. 1. Snapshots of isosurfaces of the vertical velocity in perspective (a, b) and top view (c, d) at constant rotation rate \(R_0 = 5 \) (a, c) and \(R_0 = 0.1 \) (b, d). In blue a negative value of the vertical velocity is shown at half the minimal value observed in the domain, while in red we display regions where the vertical velocity is half the maximal value in the domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Snapshots of isosurfaces of the temperature at constant rotation rate \(R_0 = 5 \) (a) and \(R_0 = 0.1 \) (b). In blue the contour at \(T = 0.05 \) is shown while \(T = 0.95 \) is displayed in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
$Ro_0 = 0.1$ with a torsional structure are clear illustrations of this (for a further discussion we refer to Kunnen et al. (2008, 2010)).

The effect of rotation on the temperature distribution in the domain is equally striking. In Fig. 2 we show snapshots of isosurfaces of the temperature. While the average heat transfer characteristics were found to be nearly identical in terms of the Nusselt number (Kunnen et al., 2010), the structure of the temperature field which underpins this efficiency of heat transfer is very different. In fact, the vortical plumes that are seen in the velocity are also the dominant feature in the temperature field. In contrast, the large-scale circulation does not display a strong influence in terms of flow structuring - the isosurfaces of high and low temperatures are well localised near the upper and lower walls respectively.

The effect of time-modulation of the rotation rate depends strongly on the modulation frequency Ro_x. Taking ‘fast’ ($Ro_0 = 0.1$) and ‘slow’ ($Ro_0 = 5$) constant rotation as points of reference, we may traverse from ‘slow’ to ‘fast’ rather slowly ($Ro_x > 1$) or rather quickly ($Ro_x \ll 1$). This induces quantitative differences in the dominant structures of the flow. In Fig. 3 an overview of temperature and vertical velocity fields is shown characterising the qualitative effects due to changes in Ro_x. The modulation frequency is seen to have only a modest structural effect at $Ro_0 = 0.5$ as can be inferred from Fig. 3(a) and (b). The flow is mainly in a state reminiscent of the LSC state at constant rotation, although an occasional vortical plume is seen in the temperature field and the LSC appears to be somewhat more concentrated near

![Fig. 3. Snapshots of isosurfaces of the temperature (a, c, e) and vertical velocity (b, d, f) displaying the qualitative effect of modulation of the rotation rate. Results are obtained at a mean Rossby number $Ro_0 = 2.45$ and a modulation depth Rossby number $Ro^* = 2.55$. The Rossby number of the modulation frequency was varied: $Ro_x = 0.5$ (a, b), $Ro_x = 0.2$ (c, d) and $Ro_x = 0.1$ (e, f). Labeling of the contours is as in Figs. 1 and 2.](image)

![Fig. 4. Time-dependent Nusselt number obtained for time-modulated rotation rates with $Ro_0 = 2.45, Ro_x = 2.55$ and varying modulation frequencies Ro_x: 0.1 (asterisks), 0.2 (squares), 0.5 (diamonds), 1 (circles). Also included is the constant rotation case at $Ro_0 = 0.1$ (thin solid line). In (a) we show a detailed view for $t < 20$ while (b) displays the long-time behaviour, showing for $Ro_x < 0.2$ clear build-up of Nu to rather high values, followed by abrupt collapse.](image)
the centreline of the cylinder. Increasing the modulation frequency is seen to yield a strong thermal structure centred around the axis of the cylinder, while clear sheared turbulence structures near the vertical sidewalls appear. These shear structures are somewhat aligned horizontally, an effect stimulated by the Euler force which was shown to induce additional flux contributions to the azimuthal momentum transfer only. The ‘middle section’ of the flow domain is occupied by a ‘thermal column’ if \(Ro_0 \) is sufficiently low, in which an almost direct contact between hot and cold fluid arises, thereby creating a basis for an intensified heat transfer to which we return in the next Section. The width of the thermal column is comparable to the domain size. Due to this qualitative change in the flow also effective transport properties such as mixing will be affected. The heat transfer will be quantified in the next Section.

4. Dynamics of heat transfer

We first present the results for the Nusselt number and discuss the peculiar combination of slow and fast dynamics that is observed in the Euler force is rather strong, i.e., at low values of \(Ro_0 \). Next to a fast modulation on top of a slow, gradually increasing Nusselt number, the simulations display a rather catastrophic collapse of \(Nu \) at certain, quite regularly spaced intervals. We investigate one such collapse of the heat transfer efficiency and show the corresponding qualitative switching that occurs in the flow structures.

In order to quantify the consequences of time-modulated rotation on the efficiency with which heat can be transferred from the hot bottom plate to the colder top plate, we concentrate on the rotation on the efficiency with which heat can be transferred from the hot bottom plate to the colder top plate, we concentrate on the

\[
\text{Nu}(t) = \langle \theta, T \rangle
\]

where \(\langle \cdot \rangle \) denotes averaging over the top and/or bottom wall. At constant rotation rate the dependence of the Nusselt number on the Rossby number was investigated in Kunnen et al. (2010). It was shown that a maximum arises at \(Ro_0 \approx 2.5 \) as which \(\text{Nu}(Ro_0)/\text{Nu}(\infty) \approx 1.15 \), comparing the Nusselt number in a rotating system to the Nusselt number without rotation, \(\text{Nu}(\infty) \). Moreover, if the rotation rate is increased corresponding to \(Ro_0 < 2.5 \) a monotonously decreasing \(Nu \) is found which is approximately equal to \(Nu(\infty) \) as \(Ro_0 \approx 0.1 \). The long-time averaged value of \(Nu \) in the current system was found to be around 72.

In Fig. 4 we show the evolution of the Nusselt number, starting from a well-developed turbulent state obtained for constant rotation rate at \(Ro_0 = 2.45 \). To create a point of reference, the evolution of \(Nu \) at constant rotation rate \(Ro_0 = 0.1 \) is also included as thin solid line. For the particular initial condition that was selected, we observe a strong transient at \(Ro_0 = 0.1 \) after which the system recovers during a transient state of about 20 dimensionless time units. A similar long transient period was also observed at other \(Ro_0 \) in case of constant rotation rate.

The effect of modulated rotation is already clearly expressed during the first transient stages. For rather low modulation frequencies, e.g., \(Ro_0 = 1 \) we observe a smoothly oscillating dependence of \(Nu \) on time with a long-time averaged value that differs only little from the constant rotation rate at constant rotation rate at \(Ro_0 = 0.1 \). We observe, however, that an increase in the modulation frequency, i.e., a decrease in \(Ro_0 \), induces qualitative changes. We observe stronger oscillations in \(Nu \) at \(Ro_0 = 0.5 \) without affecting the long-time averaged value much, but at \(Ro_0 = 0.2 \) and even 0.1 we notice the occurrence of rather fast oscillations with significant amplitude on top of a more gradual development of \(Nu \). This is illustrated clearly in Fig. 4(a) when zooming in on the initial transient. Moreover, we notice from this Figure that also the value of \(Nu \) increases considerably above the value at constant rotation rate. Turning attention to the dynamics of \(Nu \) over longer periods we observe this behaviour in its proper time frame. This expresses one more phenomenon, i.e., that of a very rapid collapse of \(Nu \) during very short bursts, with an averaged behaviour somewhat reminiscent of a saw-tooth curve. Such collapse does not yet express itself clearly as \(Ro_0 = 0.5 \) but for \(Ro_0 = 0.1 \) clearly distinguished events of collapse arise. The time between two such collapse events is seen to increase with decreasing \(Ro_0 \), while the magnitude of the collapse increases with increasing modulation frequency. If the modulation frequency is increased sufficiently, e.g., \(Ro_0 \approx 0.2 \), we notice that

![Fig. 5](image-url) Illustration of Nusselt collapse events occurring for a time-modulated rotation rate at \(Ro_0 = 0.2 \). In (a) the time-history of \(Nu \) is shown and in (b) we zoom in on a particular example of rapid \(Nu \) collapse.
the time-averaged Nu is considerably increased and that the dynamics of Nu is qualitatively altered. In fact, in case the Euler forces dominate the dynamics Nu oscillates rapidly during slow build-up phases, reaches high values, i.e., induces an effective flow structure for thermal transport and collapses vigorously to initiate the next build-up phase. As may be observed in Fig. 4(b), in case $Ro_{\infty} = 0.1$ peak values as high as 180–190 can be achieved. This is up to 250% higher than the time-averaged value attained for the non-rotating case, found to be 72 in Kunnen et al. (2008) at the same $Ra = 10^9$ and $\sigma = 6.4$. Considering a rough estimate for the long-time averaged Nu, obtained from approximately averaging over several periods of rather slow oscillatory growth of Nu followed by rapid collapse of Nu, one finds values around 140–150 at $Ro_{\infty} = 0.1$. This represents an increase by about 200% compared to the long-time average in the non-rotating case.

In order to appreciate the observed collapse of the Nusselt number in the rapidly modulated rotation case, we illustrate the case $Ro_{\infty} = 0.2$ in Fig. 5, displaying an overall recurring collapse of Nu after an extended period of more gradual oscillatory build-up. The precise time history of the Nusselt number in Fig. 5(b) shows a reduction in Nu of about 80 units from a high value around 135 to a low value of approximately 55, in about 7 dimensionless time units. This is quite fast compared to the general period of build-up of Nu which may be estimated around 35 time units at the selected parameters.

The reason for this strong reduction in Nu may qualitatively understood by turning to the large changes in the flow structure just prior to a collapse, e.g., at $t = 117$, and just after a collapse, e.g., at $t = 125$. Fig. 6 illustrates the associated qualitative changes in the flow structure, concerning temperature and velocity. We notice by comparing Fig. 6(a) and (b) that the thermal column, which developed over the past ≈ 35 time units, almost completely disintegrates and the associated high value of Nu reduces to values typical of the non-rotating situation. This event coincides with a situation of high turbulent activity throughout the domain (Fig. 6(c)) to one in which again most activity is located in the shear layers near the side walls only (Fig. 6(d)). Currently, we do not have a full mechanistic interpretation of the complete dynamics associated with such an event of Nu-collapse but present only the qualitative features. This striking dynamics requires further study, aimed at understanding how such dramatic collapse can be prevented, ultimately leading to sustained, much higher levels of heat transfer, provided suitable physical flow control can be established.

5. Concluding remarks

In this paper we presented DNS results of time-modulated rotating Rayleigh–Bénard convection in a cylindrical domain of unit aspect ratio. The inclusion of a time-dependent rotation rate introduces an additional term in the equations which represents the so-called Euler force. This force acts in the circumferential direction only and may qualitatively alter the flow from a condition of a domain filling large-scale circulation (at low constant rotation rates) or dispersed local thermal plumes (at high constant rotation rates), to a more or less segregated situation in which a pronounced thermal column forms along the centreline of the domain and highly sheared structures appear in the boundary layer near the vertical sidewalls. Situations displaying this thermal column were found to support a strongly increased Nusselt number, indicating a striking qualitative similarity with findings from the experimental work reported in Niemela et al. (2010). The experimental work was conducted at different flow conditions, e.g., a higher Rayleigh number and a different Prandtl number, which are currently not accessible for DNS. Ongoing research into space–time parallel algorithms is dedicated to increase the range of Rayleigh numbers with the aim to connect also quantitatively to the experimental findings.

A dominant Euler force was shown to yield very complex flow dynamics in which a long-time build-up of thermal structures arises in an oscillating manner, interspersed by events of very abrupt and considerable collapse with associated strong reduction of the thermal transport efficiency, as quantified by the Nusselt number. This presents an interesting challenge in physical control of such turbulent flow, aimed at building up high-Nu flow structures by modulated rotation. This is subject of ongoing research and new agitation procedures will be developed that prevent too high levels of turbulent velocity fluctuations near the centreline of the cylinder.

Acknowledgement

The computations were made possible by a Grant from the Dutch National Science Foundation (NWO), executed at SARA (Grant SH-061).

References

