Index-aware model order reduction : LTI DAEs in electric networks

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
onaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2020
Index-aware model Order Reduction: LTI DAEs in electric networks

Nicodemus Banagaaya¹ and Wil Schilders¹

Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven, The Netherlands
n.banagaaya@tue.nl, w.h.a.schilders@tue.nl

Summary. Model order reduction (MOR) has been widely used in the electric networks but little has been done to reduce higher index differential algebraic equations (DAEs). Most methods first do an index reduction before reducing a higher DAEs but this can lead to loss of system physical properties. In this paper we present a new MOR method for DAEs called the index-aware MOR (IMOR) which can reduce higher index-2 system while preserving the index of the system.

1 Introduction

Consider a linear time invariant (LTI) DAE system:

\[Ex'(t) = Ax(t) + Bu, \quad x(0) = x_0, \quad (1a) \]
\[y(t) = C^T x(t), \quad (1b) \]

where \(E, A \in \mathbb{R}^{n,n}, B \in \mathbb{R}^{n,m}, C \in \mathbb{R}^{l,n} \), \(x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^m \) is the input vector, \(y(t) \in \mathbb{R}^l \) is the output vector and \(x_0 \in \mathbb{R}^n \) must be a consistent initial value since \(E \) is singular. In many MOR methods they always assume that \(x_0 = 0 \) which lead to a transfer function \(H(s) = C^T (sE - A)^{-1} B \) if and only if matrix pencil \(sE - A \) is regular. Unfortunately for the case of DAEs we cannot always have this freedom of choosing an arbitrary initial condition \(x_0 \), in fact we cannot always obtain a transfer function especially for index greater than 1 as discussed in Sect. 2.

This motivated us to propose a new MOR technique for DAEs called the IMOR method which takes care of this limitation. In this technique before we apply MOR we first decompose the DAE system into differential and algebraic parts using matrix and projector chains introduced by M"arz in 1996. We then use the existing MOR techniques such as the Krylov based methods on the differential part and develop new techniques for the algebraic part.

In order to decompose higher index systems (\(\mu > 1 \)), M"arz suggested an additional constraint \(Q_jQ_i = 0, \quad j > i \) on the projector construction. If this constraint holds then Equation (2) can be decomposed into differential and algebraic parts. However, the M"arz decomposition leads to a decoupled system of dimension \((\mu + 1)n \). It does not even preserve the stability the DAE system. This motivated us to modify the M"arz decomposition using special basis vectors as presented in papers and for the case of index-1 and index-2 respectively. Our decomposition leads to a decoupled system of the same dimension as that of the DAE system. Then we apply Krylov methods on the differential part and constructed subspaces to reduce the algebraic parts. In Sect. 2 we briefly discuss the IMOR method for index-2 systems (IMOR-2) more details can be found in.

2 Index-aware MOR for index-2 systems

Assume Equation (1a) is an index-2 system this implies \(\mu = 2 \). We observed that for higher index DAEs there is a possibility of obtaining a purely algebraic decoupled system depending on the nature of spectrum of the matrix pencil \(\sigma(E, A) = \sigma_f(E, A) \cup \sigma_a(E, A) \), where \(\sigma_f(E, A) \) and \(\sigma_a(E, A) \) is the set of the finite and infinite eigenvalues respectively. This happens when matrix spectrum has only infinite eigenvalues, i.e. \(\sigma_f(E, A) = \emptyset \). Thus higher index DAEs can be decomposed into two ways. Due to space we are going to only discuss the case when \(\sigma_f(E, A) \neq \emptyset \) the other case can be found in our paper. We now assume matrix pencil of Equation (1a) has atleast one finite eigenvalue. We then construct basis vectors \((p, q) \) in \(\mathbb{R}^n \) with their inversion \((p, q)^T \) for the projectors \(P_0 \) and \(Q_0 \) respectively where \(p \in \mathbb{R}^{n,m}, q \in \mathbb{R}^{n,k_0} \). This leads to a theorem below.

Theorem 1. Let \(P_{01} = p_0^T P_0 p, \quad Q_{01} = p_0^T Q_0 p, \) then \(P_{01}, Q_{01} \in \mathbb{R}^{n_0,n_0} \) are projectors in \(\mathbb{R}^{n_0} \) provided the constraint condition \(Q_0 Q_0 = 0 \) holds.

Next, we construct another basis matrix \((p_{01}, q_{01}) \) in \(\mathbb{R}^{n_0} \) made of \(n_{01} \) independent columns of projector \(P_{01} \) and \(k_1 \) independent columns of its complementary projector \(Q_{01} \) such that \(n_0 = n_{01} + k_1 \) and it’s inverse can be denoted by \((p_{01}, q_{01})^T \). Then Equation (1) can be decomposed as:
\[\xi_p' = A_p \xi_p + B_p u, \quad (3a) \]
\[\xi_q = A_q \xi_q + B_q u, \quad (3b) \]
\[\xi_q,0 = A_q,0 \xi_p + B_q,0 u + A_q,01 \xi_q,1, \quad (3c) \]
\[y = C_p \xi_p + C_q,1 \xi_q + C_q,0 \xi_q,0, \quad (3d) \]

where
\[A_p := p_0^T \rho_0^{-1} E_2^{-1} A_{2,p} p_0 p_0, \quad B_p := p_0^T \rho_0^{-1} E_2^{-1} B, \]
\[A_q := q_0^T \rho_0^{-1} E_2^{-1} A_{2,q} p_0 p_0, \quad B_q := q_0^T \rho_0^{-1} E_2^{-1} B, \]
\[A_q,0 := q_0^T \rho_0^{-1} E_2^{-1} A_{2,q,0} p_0 p_0, \quad B_q,0 := q_0^T \rho_0^{-1} E_2^{-1} B, \]
\[A_q,01 := q_0^T \rho_0^{-1} E_2^{-1} A_{2,q,01} p_0 p_0, \quad C_p := p_0^T \rho_0 C \in \mathbb{R}^{n_0_1,\ell}, \]
\[C_q,1 := q_0^T \rho_0 C \in \mathbb{R}^{n_1,\ell}, \quad C_q,0 := q_0^T C \in \mathbb{R}^{n_0,\ell}. \]

Equations (3a), (3b) and (3c) are of dimension \(n_0, k_1 \) and \(k_0 \) respectively, where \(n = n_0 + k_1 + k_0 \). System (3) preserves stability of the DAE system (1). Since it can be proved that \(\sigma(A_p) = \sigma_1(E, A) \), if we take the Laplace transform of (3) and set \(\xi_p(0) = 0 \) then we obtain
\[Y(s) = [H_p(s) + H_q,1(s) + H_q,0(s)] U(s) + H_q,0(0), \]
where
\[H_p(s) = C_p^T (sl_0 - A_p)^{-1} B_p, \]
\[H_q,1(s) = C_q,1^T [A_q,1 (sl_0 - A_p)^{-1} B_p + B_q,1], \]
\[H_q,0(s) = C_q,0^T [A_q,0 + A_q,01 A_q,1] (sl_0 - A_p)^{-1} B_p + C_q,0 [B_q,0 + A_q,01 B_q,1], \]
\[H_q,0(0) = -C_q,0 A_q,01 B_q,1 u(0). \]

Thus not always we can obtain the transfer function of index 2 systems for arbitrary input vector \(u \) unless \(H_q,0(0) = 0 \). Now apply IMOR-2 method as follows: If we choose the expansion point \(s_0 \in C \setminus \sigma(A_p) \), we construct a Krylov-subspace generated by \(M_p := -(s_0 l_0 - A_p)^{-1} \) and \(R_p := (s_0 l_0 - A_p)^{-1} B_p \). Then, \(V_p := \text{orth}(\mathcal{K}_p(M_p, R_p)) \), \(r \leq n_0 \). We then use \(V_p \) to construct the subspace \(\mathcal{Y}_q,0 = \text{span}(B_{q_1}, A_{q_1} V_p) \) and its orthonormal matrix is denoted by \(V_q,0 = \text{orth}(\mathcal{Y}_q,0) \), \(\tau_0 \) is \(\min((r+1)m, \dim(\mathcal{Y}_q,0)) \). We finally construct subspace \(\mathcal{Y},0 \) spanned by \(\mathcal{Y}_q,0, \mathcal{Y}_q,01 \), where
\[\mathcal{Y}_q,01 = ((A_q + s_0 A_q,01 A_q,1) M_p + A_q,01 A_q,1) V_p, \]
and it’s orthonormal matrix is denoted by \(V_q,01 = \text{orth}(\mathcal{Y}_q,0) \), where \(\tau_0 \) is \(\min((r+2)m, \dim(\mathcal{Y}_q,0)) \). We can now use the orthonormal matrices \(V_p, V_q,0,1 \) and \(V_q,0,0 \) to reduce the dimension of the subsystems (3a), (3b) and (3c) respectively as consequence the dimension of the decoupled system (3) is also reduced. Hence, if we substitute \(\xi_p = V_p \xi_{p,0}, \xi_q = V_q,1 \xi_{q,1}, \xi_q,0 = V_q,0,1 \xi_{q,0,0}, \)
into system (3) and simplifying we can obtain a reduced model of DAE system (1) which will call the IMOR-2 model.

3 Numerical results

We used an index-2 test system called S80PI in [5] which is a large power system RLC model. It’s a single-input single-output (SISO) system of dimension 4182. We applied the IMOR-2 method using \(s_0 = j 0^3 \). We obtained a reduced model of total dimension 219 as shown in Table 1. We observed that the magnitude of the transfer reduced model coincides with that of the original model at low frequencies with very small error as shown in Fig. 1. We have seen that the IMOR-2 method leads to good reduced model and can be used on any index-2 system.

<table>
<thead>
<tr>
<th>Table 1. Dimension of the Original and Reduced model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Original Model</td>
</tr>
<tr>
<td>Reduced Model</td>
</tr>
</tbody>
</table>

Fig. 1. Magnitude of the transfer functions

Acknowledgement. This work is funded by NWO.

References