Reply to "Comment on 'Theory of high-force DNA stretching and overstretching'"
Storm, C.; Nelson, P.

Published in:
Physical Review E

DOI:
10.1103/PhysRevE.70.013902

Published: 01/01/2004

Citation for published version (APA):
Reply to “Comment on ‘Theory of high-force DNA stretching and overstretching’”

Cornelis Storm* and Philip Nelson
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
(Received 27 October 2003; published 2 July 2004)

In his Comment to an earlier paper [Phys. Rev. E 67, 051906 (2003)] Lam points out an error in Eq. (20) of the original paper. Here we show that use of the corrected expression produces results very similar to those presented in our original paper, so our qualitative conclusions are unchanged.

DOI: 10.1103/PhysRevE.70.013902 PACS number(s): 87.15.−v, 82.35.Lr

As Lam points out in the preceding Comment [1], there is an error in Eq. (20) of our paper [2]. Instead of

\[
y(\omega) = \frac{2 \sqrt{2} \pi^3 \omega^2 e^{-2\tilde{\ell}} (2\omega + \tilde{f})^2}{\sqrt{-\tilde{\ell}} (2\omega + \tilde{f})} \text{csch}(2\omega) \\
\times \left[\text{erf} \left(\frac{i}{2 \sqrt{2} \tilde{\ell}} (\tilde{f} + 4\tilde{\ell} + 2\omega) \right) \\
- \text{erf} \left(\frac{i}{2 \sqrt{2} \tilde{\ell}} (\tilde{f} - 4\tilde{\ell} + 2\omega) \right) \right],
\]

it should, in fact, read

\[
y(\omega) = \frac{2 \sqrt{2} \pi^3 \omega^2 e^{-2\tilde{\ell}} (2\omega + \tilde{f})^2}{\sqrt{-\tilde{\ell}} (2\omega + \tilde{f})} \text{csch}(2\omega) \\
\times \left[\text{erf} \left(\frac{i}{2 \sqrt{2} \tilde{\ell}} [4\tilde{\ell} + (\tilde{f} + 2\omega)] \right) \\
- \text{erf} \left(\frac{i}{2 \sqrt{2} \tilde{\ell}} [4\tilde{\ell} - (\tilde{f} + 2\omega)] \right) \\
- 2 \text{erf} \left(\frac{i}{2 \sqrt{2} \tilde{\ell}} (\tilde{f} + 2\omega) \right) \right].
\]

FIG. 1. Fit of the extensible DPC model (solid line) to the single-strand DNA stretching data (dots) supplied by Rief; see Ref. [3]. The fit shown was obtained for \(b=0.21 \text{ nm}, E=2.8 \times 10^3 \text{ pN}, L_{\text{ref}}=3.7 \text{ \mu m}, \text{ and } \kappa_{\text{DPC}}=3/2(k_B T/0.71 \text{ nm}). \) In addition, the dashed and long-dashed lines show the corresponding best fits to the extensible WLC and FJC, respectively. All fits include the data points only for forces between 20 pN and 250 pN. Values for \(\chi^2 \) were EFJC, \(\chi^2=0.20; \) EWLC, \(\chi^2=0.13; \) and EDPC, \(\chi^2=0.12 \) at \(N=1271. \) We ignore the lowest-force points because of complications induced by hairpins and other secondary structures in the DNA.

*Present address: Institut Curie, UMR 168, 26 rue d’Ulm, F-75248 Paris Cedex 05, France.

Electronic address: cornelis.storm@curie.fr
We conclude by expressing our gratitude to Dr. Lam for bringing to light this unfortunate error.