Estimation of left ventricular pressure in patients with a continuous flow LVAD

Citation for published version (APA):
Estimation of left ventricular pressure in patients with a continuous flow LVAD

Kim Pennings¹,², Niels Petterson², Stephanie Schampaert², Sjoerd van Tuijl², Frans van de Vosse², Bas de Mol¹, Marcel Rutten²

¹ Academic Medical Centre, Amsterdam; ² Eindhoven University of Technology; ³ LifeTec Group BV, Eindhoven

Aim
Long-term ventricular support with a Left Ventricular Assist Devices (LVAD) requires intensive and frequent monitoring of the patient.

Left ventricular pressure (pLV) is a good measure for LV function. In this study, we aim to assess dynamic left ventricular pressure, using the LVAD as a sensor.

Ex vivo model
The method was validated with a porcine ex-vivo beating heart model (figure 1). Measurements were done on four hearts supported with a Micromed DeBakey VAD and three hearts supported with a Heartmate II VAD.

Estimation left ventricular pressure
Pressure head over the LVAD (pLVad) is estimated from pump flow with a static and dynamic pump model. From pressure head and aortic pressure, left ventricular pressure is estimated:

\[p_{LV}^{estimated} = p_{ao} + dp_{outflow graft} - dp_{LVad, estimated} \]

dp\text{outflow graft} is the pressure drop in the outflow graft. Calculated as follows:

\[dp_{outflow graft} = R \cdot Q + L \cdot \frac{dQ}{dt} \]

Results
Mean left ventricular pressure was estimated using static pump characteristics (figure 2).

Left ventricular pressure was also estimated as a function of time using dynamic pump characteristics (figure 3).

\[dp_{d\text{t}_{\text{max}}}^{dmax}, \text{maximum, minimum and mean left ventricular pressure were derived from the estimated } p_{LV} \text{ (figure 4).} \]

Conclusions
In our beating heart experiments, a reliable estimation of left ventricular pressure was possible using static or dynamic pump characteristics.

Once combined with a focused clinical study we infer that left ventricular pressure in LVAD supported patients can be monitored sufficiently reliably in case pump flow and aortic pressure are measured. This will give a good indication for unloading of the ventricle and native heart function, in case of recovery of the heart or destination therapy during long-term support.