JEPPIX : access to generic foundry processes for INP photonic integrated circuits
Lawniczuk, K.; Smit, M.K.

Published in:
IEEE Avionics, Fiber-Optics and Photonics Conference(AVFOP), 11-13 November 2014, Atlanta, GA, USA

DOI:
10.1109/AVFOP.2014.6999458

Published: 01/01/2014

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 26. Nov. 2018
JEPIX : ACCESS TO GENERIC FOUNDRY PROCESSES FOR INP PHOTONIC INTEGRATED CIRCUITS

Katarzyna Ławniczuk¹, Meint K. Smit²

¹JePIX – TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
²COBRA Research Institute – TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Introduction

A generic foundry model in photonics enables design and fabrication of variety of different photonic devices, for versatile applications, using standardized high-performance foundry platforms. The choice of the design method is based on reusing standardized and parameterized photonic building blocks (BBs) [1]. These BBs form complex photonic integrated circuits (PICs) and as foundry-verified BB models allow for reduction of the design time and number of design (fab) cycles needed to achieve a required performance of prototype PIC devices. Among the BBs, considered as elementary components, a small set is sufficient to support a broad class of photonic functions. These BBs are: (1) passive waveguides, (2) semiconductor optical amplifiers (SOAs), (3) phase modulators, (4) polarization converters and a few other components. In the generic model the entry costs for a generic standardized process are mainly restricted to design costs, since the fabrication costs are shared by participating in so-called multi-project wafer (MPW) runs.

Multi-project wafer run

Access to the generic foundries is available via MPW runs. In this way, the costs of fabrication of photonic ICs are reduced by more than an order of magnitude and come within reach for SMEs, research institutes and universities. The reduction of processing costs is achieved by costs-sharing among many application users participating in one fab cycle, and by reusing standardized and parameterized photonic components. The participants of MPW runs design their circuits following the design rules of the foundry and using BBs provided by the foundry. Figure 1 shows an indium phosphide (InP) MPW realized in the COBRA process. The MPW combines 12 different application specific photonic IC designs, for a number of applications, fabricated using the same processes.

Figure 1. Example of a Multi-Project Wafer (MPW), left. Size of a single chip is a few mm², right. The foundry or a broker combines all designs on one wafer and runs a generic fabrication process without knowing or needing to know the design details. In this way the foundry is, so called, “application blind”.

JePIX platforms for photonic ICs

In JePIX [2] Europe’s key players in the field of InP-based photonic integration technology are cooperating on the development of a generic foundry model using generic integration processes. Presently a number of large R&D projects are running, developing both the generic foundry technologies, and the infrastructure to make them accessible at low cost for a broad range of companies: design tools, component libraries, generic packaging technology and generic test equipment. Among photonic foundries that offer generic manufacturing services and access to their facilities via MPW runs, three InP-based integration technologies are leading: Fraunhofer HHI [3], Oclaro [4], and SMART Photonics [5]. Access to these technologies, as well as to TriPleX [6] platform, is provided within JePIX.
For the recently started semi-commercial InP-based MPW runs [7], the entry costs are between 5000 € for a small chip and up to 40,000 € for a large PIC that can integrate up to several hundred components, including passives, lasers, optical amplifiers, 10 Gb/s modulators and 40 Gb/s detectors. These costs are very competitive, when compared to advanced silicon photonics MPW runs, while offering more functionality (on-chip integrated optical amplifiers and lasers). At the present price level these costs are very attractive for integrating complex sub-circuits containing larger numbers of photonic components, making them much cheaper, more compact and rigid than their alternatives based on discrete components. As the entry costs are affordable for most SMEs, we expect a rapid expansion in the application of PICs and increase in applying PICs in novel or improved products.

Summary

The approach of generic foundry model opens new market directions for companies specialized in PICs design, development and prototyping, based on a fabless business model. It brings application of Photonic ICs in novel or improved products within reach for both SMEs and larger companies that do not own a cleanroom fab. The low entry costs of a generic model make it attractive for introducing photonic ICs also to non-telecom markets, like: medical and bio-imaging [8], optical data-handling [9], fiber sensor readouts [11], THz applications [12]. Examples of photonic ICs fabricated via MPW runs on InP-based platforms are presented in Figure 2.

Figure 2. Examples of InP photonic ICs fabricated in MPW runs: (a) optical pulse shaper [8], (b) delay interferometer [9], (c) multichannel transmitter [10], (d) wavelength meter for sensing [11].

Acknowledgment

The research leading to these results has received funding from the EU FP7 projects EuroPIC and PARADIGM. Additionally, this work was partly funded by the Dutch Ministry of Economic Affairs through the SmartMix project Memphis, STW GTIP: Generic Technologies in Integrated Photonics, IOP Photonic Devices. The authors would like to thank all colleagues in these projects for their contributions.

References