The effect of microstructural morphology on damage in multi-phase materials

de Geus, T.W.J.; Peerlings, R.H.J.; Geers, M.G.D.

Published: 01/01/2013

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Dec. 2018
The effect of microstructural morphology on damage in multi-phase materials

Tom de Geus, Ron Peerlings, Marc Geers

Industrial background

Important engineering examples of multi-phase materials are metal matrix composite and dual phase steel (DPS). DPS is often used in complex shaped structural parts of a car-body (figures) due to its unique combination of strength and ductility.

Material properties and failure

We consider a general dual phase material with a microstructure that comprises hard particles embedded in a soft matrix (fig. b). The stress–strain response displays a combination these phases (fig. a).

Goal

We need a better understanding of the failure mechanisms to improve the failure characteristics. We focus on the effect of the distribution of phases (morphology) on damage.

Microstructural model

To systematically study the effect of the distribution of phases, we use a structured microstructural model. We statistically compare many random distributions using their damage response. Therefore, the model is discretized using finite elements. We apply a ductile damage criterion (cf. Rice & Tracy).

Damage statistics

The microstructure is described by an indicator function \(I \). We compare different distributions by averaging \(I \) around damage hot-spots (e.g. as highlighted): \(\bar{I} = \frac{\sum [D_i I_i]}{\sum [D_i]} \)

Result

The resulting \(\bar{I} \) – interpreted as probability of hard phase around damage hot-spots – is shown (r) together with the interpretation (l). We observe a preferred orientation of hard bands leading to high stress and soft bands for high strain in the damage hot-spot chosen in the center.

Conclusion

- We have set-up a statistical framework to identify the influence of the microstructural morphology of damage.
- We have identified a critical morphology for damage.

Outlook

1. Apply the damage statistics to:
 - investigate the influence of the sub-surface microstructure;
 - do experimental verification;
 - study damage propagation

2. Systematically vary microstructural parameters to identify their respective influence on damage (mechanisms).

Illustrations: U.S. Insurance Institute for Highway Safety [featured], boronextrication.com [steel in car], tatamotors.com [formed part]