Cell therapy for intervertebral disc repair: advancing cell therapy from bench to clinics

Published in:
European Cells and Materials

Published: 01/01/2014

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Intervertebral disc (IVD) degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium “Where Science meets Clinics”, sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from “black discs” or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.

Keywords: Regenerative medicine, clinical translation, intervertebral disc, cell therapy, barriers, patient selection, safety.

Address for correspondence:
Sibylle Grad, PhD
AO Research Institute Davos
Clavadelstrasse 8, 7270 Davos, Switzerland
Telephone Number: +41 81 414 24 80
FAX Number: +41 81 414 22 88
E-mail: sibylle.grad@aofoundation.org

Introduction

Intervertebral disc (IVD) degeneration is a major cause for neck and low back pain and as such a significant public health problem. According to the Global Burden of Disease Study, published in The Lancet in December 2012, low back pain is the leading cause of disability, with current estimates of 632 million people affected worldwide (Vos et al., 2012). In many cases neither conservative nor surgical treatment can provide satisfactory outcome for patients and clinicians. Hence there is a critical need for new therapies to attenuate disc degeneration and restore disc function. Research in the field of regenerative medicine and tissue engineering has intensified over the last decade, advocating attractive biomaterial, cellular and molecular solutions for IVD regeneration. Nonetheless, the translation of such new applications into clinical practice remains a major roadblock, and only few biological treatments have advanced to clinical studies. There are still serious hurdles to overcome before biological therapies for IVD repair can be introduced to the clinic. The aim of the symposium “Where Science meets Clinics”, which was sponsored by the AO Foundation and held in Davos, Switzerland on September 5-7, 2013, was to address these barriers and to discuss strategies to overcome them. A diverse group of scientists, clinicians, health care industry and regulatory agency representatives was invited to present their views of current state of the art, major challenges and visions for advancement. This position paper focusses on the possibilities and difficulties of cell therapies for IVD regeneration. We first outline the present state of knowledge and then summarise the discussion among scientists and clinicians.

Cell Therapy in Intervertebral Disc Degeneration: Current State

In basic or pre-clinical research, one of three biological approaches is typically used to address the degenerative process: stimulating anabolic processes; modulating catabolic processes; and providing new cells. The latter approach appears very attractive, given that one important feature of IVD degeneration is a decrease in viable and functional cell numbers, and a substantial proportion of the existing cells are in a senescent state. IVD cells can broadly be separated in nucleus pulposus (NP) cells, which
are notochordal in the young and resemble chondrocytes in adults, and annulus fibrosus (AF) cells, which have fibroblast characteristics. The microenvironment, including mechanical and osmotic stresses and oxygen tension, has a significant effect on the cells, while IVD cells are generally characterised by low proliferative capacity.

Due to the limitations of differentiated IVD cells, different stem cell populations have been investigated for IVD regeneration. Evidence for the presence of endogenous stem/progenitor cells in the IVD has recently been accumulating; hence, mobilisation and activation of these cell pools appears an attractive strategy for enhancing self-repair (Sakai et al., 2012). To date, only in vitro data exist on the activation of endogenous stem/progenitor cells, and the amount of stem cells might be insufficient at the age when disc degeneration becomes a clinical problem. Mobilising stem cells from the surrounding tissues may be limited by the lack of blood supply. While results from organ culture studies have demonstrated the possibility of cell homing into degenerative discs (Illien-Junger et al., 2012), feasible applications of this promising finding in a clinical situation still need to be identified.

Alternatively, stem cells can be directly transplanted into the damaged disc. Numerous in vivo studies have been performed on the transplantation of mesenchymal stem cells (MSCs) in disc degeneration models. Bone marrow derived MSCs have been injected into rabbit (Sakai et al., 2003; Sakai et al., 2005; Sakai et al., 2006), rat (Crevensten et al., 2004), canine (Hiyama et al., 2008) and goat (Zhang et al., 2011) IVD, and largely demonstrated regenerative potential. Furthermore, xenogenic transplantation of human MSCs into porcine models (Henriksson et al., 2010; Orozco et al., 2010; Hohaus et al., 2003; Sakai et al., 2012), feasible applications of this promising finding in a clinical situation still need to be identified.

The questions remain, at what stage of degeneration are we beyond biological repair and for how long can we halt disease progression?

To date only few clinical trials have been performed using cell therapy for IVD repair or regeneration. In the Euro Disc study, culture-expanded autologous disc cells were applied to patients with disc herniations. Two-year follow up data reported significant pain reduction, disc height preservation in the treated level, and maintenance of hydration in adjacent levels, which were evident only in the treatment group (Meisel et al., 2007). NuQu® is an innovative approach to disc repair that uses allogeneic juvenile (knee) chondrocytes with proven superior regenerative potential. The minimally invasive outpatient procedure targets disc-related pain and requires minimal patient rehabilitation. Studies in rat and porcine discs confirmed significantly superior magnetic resonance imaging (MRI) and histological outcomes in discs treated with the NuQu® system, in comparison to treatment with the fibrin carrier (Acosta et al., 2011). A phase I safety trial was subsequently performed with 15 patients with single level moderate lumbar disc degeneration (Coric et al., 2013). Continued improvement in pain scores as well as improved or unchanged MRI results could be observed from baseline to 6 and 12 months, warranting more extended human trials to assess efficacy. An on-going phase II clinical trial will assess the safety and effectiveness of NuQu® cartilage cell injection into the lumbar disc as compared to placebo in 44 subjects.

While animal and human data on the regenerative potential of injected chondrocytes or disc cells are promising, there are still open questions with respect to timing of treatment, the optimal cell source, cell pre-treatment, and cell carrier. According to current knowledge, the procedure appears safe; though long-term results are still unknown.

Cell Therapy for Disc Repair: Who is the Patient?

The most difficult question is to define the level of disc degeneration that is beyond biological repair and where an established surgical treatment is better indicated. Although it is obvious that regenerative treatment is best indicated at early stages of disc degeneration, prior to structural changes, these non-symptomatic discs usually are not seen by spine surgeons/therapists. Nevertheless, it is very likely that in the future, screening techniques focusing on genetic predisposition for early incidence of disc degeneration become available, and non-invasive imaging methods, such as quantitative MRI, are sensitive enough.
to detect early degenerative changes. Several conditions were identified as candidates for cell therapy in disc repair.

Discogenic pain

Discogenic pain may originate from “black” discs or annular injured discs presenting HIZ (high intensity zones). In these cases, discogenic low back pain is believed to arise from acute tears or fissures of the AF and from focal defects of the outer AF. These defects result in a repair process, where granulation tissue is formed along with neovascularisation and concomitant ingrowth of nerve fibres (Melrose et al., 2002; Freemont et al., 1997; Aoki et al., 2006), and degenerated NP and AF cells produce neurotrophins that promote neurovascular growth (Purmessur et al., 2008). Although the AF has not fully lost its main function to withstand the hydrostatic pressure from the NP and to stabilise the segment, discogenic low back pain has a high likelihood to develop chronicity and often needs medical treatment. These discs are ideal candidates for cell-based therapies, as no relevant structural changes have occurred yet and restoration of disc height, intradiscal pressure and mechanical function is possible through regeneration of disc matrix. In addition, discogenic pain has an inflammatory component where introduction of metabolically active cells may have a beneficial, regulatory effect. On the other hand, these patients are presently not seen by spine surgeons but are treated by non-interventional specialists such as rheumatologists and general practitioners.

Prevention of adjacent segment disease (ASD)

ASD may be prevented by prophylactic treatment in the course of a surgical intervention for a symptomatic level. Frequently, discs adjacent to a segment that is fused for various indications show already signs of degeneration and are likely to also become symptomatic over time. Several attempts to reduce the incidence of ASD, such as total disc replacement, interspineous spacers or dynamic implants, are in clinical use. As these patients are already under treatment by spine surgeons and have a high risk for progression of the disease on adjacent levels, they represent ideal candidates for an attempt to restore the biological and biomechanical function of the adjacent disc. A phase I safety trial is on-going by a Japanese research group at Tokai University regarding cell therapy to prevent IVD degeneration in the adjacent disc. They target IVDs in patients in their 20s undergoing fusion surgery demonstrating mild to moderate degeneration in the IVD adjacent to the fusion level. They culture NP cells obtained from the IVD undergoing fusion surgery, and subsequently co-culture them with autologous MSCs isolated from the bone marrow to re-vitalise the NP cells. After re-vitalising, NP cells are injected under fluoroscopic guidance to the IVD adjacent to the fusion level. Preliminary results in 10 patients show that this technique seems to have no major issues regarding patient safety.

Prevention of post-discectomy syndrome

Partial discectomy for herniation is a common procedure; as disc herniation has a lifetime prevalence of 1-3% and often affects active, working persons of 30-50 years of age, the socioeconomic impact due to medical treatment and long-term absence from work is enormous (Weinstein et al., 2006; Weber, 1994). Discectomy has been shown to be an effective treatment for acute disc herniation with regard to neurological symptoms, but fails to address the altered biomechanical properties of the segment and the resulting annular defect. In this situation, the surgeon faces the dilemma of how extensive a discectomy should be performed: if only the extruding material of the NP is resected, a relevant risk of recurrent disc herniation is well documented; however, if all or most of the NP is resected, there is also a significant chance that lost biomechanical function leads to instability or collapse of the segment (Moore et al., 1994; Kambin et al., 1995; Yorimitsu et al., 2001; Suk et al., 2001; Vucetic et al., 1997), increased disc degeneration and chronic low back pain (Barth et al., 2008). NP replacement or regeneration to restore the biomechanical function of the disc will only be successful in the presence of a functional AF that is able to restore function and withstand the physiological loading conditions (Veres et al., 2008; Thompson et al., 2000, Fazzalari et al., 2001). Synthetic and natural biomaterials capable of restoring functional biomechanics of the IVD are under development and offer promise for NP replacement, AF repair, and as an AF sealant (Iatridis et al., 2013). A successful regeneration of both the annulus and the nucleus must meet mechanical and biological compatibility requirements and is also strongly dependent on a sufficient anchorage of the regenerated tissue to the surrounding tissue. Cell-based therapies for annular repair may be helpful to overcome these barriers.

Total (biological) disc replacement for advanced disc degeneration

Total disc replacement by tissue engineered whole organs is of course an ambitious goal. Nevertheless, impressive advances have been made in whole disc replacement in rodents (Bowles et al., 2011). The patient population is large and heterogeneous, and a tissue engineered disc might be considered for specific indications in the future. So far unresolved barriers include the concomitant degeneration of the facet joints, ligaments and muscles.

Cell Therapy for Disc Repair: What are the Benefits?

Although the fate of the cells within the harsh environment of the disc with limited nutrient supply and transport of metabolites is unknown, there are several arguments for using cell-based therapies in attempts to regenerate the disc:

a) In degenerated discs, a reduced number of cells have been found in affected specimens that cannot be explained by limited nutrition and ageing alone.

b) Similarly, a loss of cells and matrix has been observed in disc herniations, further limiting the healing potential of the ruptured AF.

c) The effect of application of growth factors or other pharmaceuticals to regenerate the disc is temporally limited and may require several repetitive interventions or sustained release formulations, whereas the duration
of cell-based therapies depends on the survival and activity of the cells. Hence, a single stage application can have a long-lasting effect.

d) Cells can fulfil several functions, including matrix production, prevention of AF deformation, inflammation control, production of growth factors and prevention of angio- and neuro-genesis. Eventually, cells have the potential to interact with the resident cell population, regulate local homeostasis and attract additional cells (Illien-Junger et al., 2012).

The Need to Close the Gap towards Clinical Application

Selection of patients
Identification of suited patient populations is fundamental (see above). MRI is an ideal non-invasive screening method, and various protocols are available to quantitatively assess disc degeneration at early stages (Watanabe et al., 2007; Hoppe et al., 2012; Borthakur et al., 2011). Even though information on the nutritional status of the disc can be obtained (Rajasekaran et al., 2004; Benneker et al., 2005), to date these techniques are not yet applied in daily clinical use, mostly because of the lack of clinical consequences. Since the additional costs and effort to implement these modern sequences is moderate, they will most probably be implemented in daily routine once a regenerative treatment is available.

Standardisation of diagnostic parameters, outcome measurements and models
Until now standardised diagnostic parameters and outcome measurements for regeneration and repair are lacking. To monitor and compare effectiveness of regeneration strategies, such outcome measures need to be established on a clinical and investigational level. Efforts should be made to identify the best suited diagnostic method to quantify degenerative changes; ideally, non-invasive imaging methods such as quantitative MRI should be preferred that are widely available and can be used for both experimental and clinical purposes. Biochemically, assessment should focus on parameters that either can be reproduced on patients or are validated against the imaging techniques to be established. Similar to the lack of defined outcome parameters, in vivo and in vitro degeneration models need to be standardised to compare results of different treatments.

Cell type
Several sources have been investigated in cell therapy research. Optimal cell sources for clinical application are yet to be defined. While stem cells from bone marrow or adipose tissue show encouraging results in animal models, their senescence in aged adults is well documented. Embryonic allograft cells are appealing for their regenerative capacity, but their safe use is of concern. Autologous or allogeneic chondrocytes appear safe and effective in initial clinical trials (see above). Standardisation of procedures and longer term studies are needed to obtain reliable evidence about effectiveness of the treatment.

Delivery methods
Provocative discography has been shown to have a negative effect on discs, accelerating degeneration (Carragee et al., 2009), and this may arise due to altered mechanics around the AF defect or due to cytotoxicity of the delivery agent (Kang, 2010; Iatridis and Hecht, 2012). Alternative routes to deliver cells and other agents into the disc, keeping the AF intact, need to be developed (Vadala et al., 2013; Illien-Junger et al., 2012). Alternatively, proper repair of the AF may be an option (Guterl et al., 2013).

Large animal models and clinical studies
Many cell-based therapies have already shown promise based on in vitro or small animal models, and relevant pre-clinical screening in large animal models is required to accelerate translation. In animal models, degeneration is usually induced mechanically (stab injury, excessive torsion or compression, or removal of NP material), which is poorly comparable to the slow degenerative process in human discs. There is a need for establishment of large animal models that better mimic the disease process in humans.

Ultimately, in the light of approval from regulatory institutions (FDA), clinical studies for regenerative strategies need to be well designed with solid methodology. In particular, studies need to address the safety aspect of these treatments.

Conclusion
Due to the slow progressive nature of disc degeneration that involves cell senescence, increased catabolic activity and decreased matrix synthesis, cell therapy is an appealing approach to regenerate the intervertebral disc. This potential has already been demonstrated in pre-clinical studies, but there are also equally convincing amounts of scientific evidence demonstrating that further knowledge is required to overcome the hurdles. The most significant of these hurdles were identified in the workshop, hopefully providing some guidance for future research, in order to successfully translate this approach to the clinic for the benefit of patients suffering from this all too common and morbidity condition.

Acknowledgements
The statements in this manuscript are based on presentations and results of a podium discussion that took place during the session “Cell therapy in intervertebral disc repair” of the “Where Science meets Clinics” symposium in 2013, sponsored and organised by the AO Foundation, Davos, Switzerland. The authors thank the symposium participants for their valuable input and contributions. The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have
influenced its outcome.

The abstracts from this meeting are available at:

References

Porcine intervertebral disc repair using allogeneic juvenile
articular chondrocytes or mesenchymal stem cells. Tissue
Eng Part A 17: 3045-3055.

Aoki Y, Akeda K, An H, Muehleman C, Takahashi K,
tissue formed following nucleus pulposus extrusion in the
rabbit anular-puncture disc degeneration model: effects of
depth of puncture. Spine 31: E774-E780.

after lumbar microdiscectomy versus microscopic scieostectomy: part 1: evaluation of clinical outcome.

Benneker LM, Heinl PF, Anderson SE, Alini M, Ito K
(2005) Correlation of radiographic and MRI parameters
to morphological and biochemical assessment of

Borthakur A, Maurer PM, Fenty M, Wang C, Berger R,
Yoder J, Balderston RA, Elliott DM (2011) T1rho magnetic
resonance imaging and discography pressure as novel
biomarkers for disc degeneration and low back pain. Spine
36: 2190-2196.

Tissue-engineered intervertebral discs produce new matrix,
maintain disc height, and restore biomechanical function
to the rodent spine. Proc Natl Acad Sci USA 108: 13106-13111.

Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino
progression of degeneration changes in the lumbar disc: a
ten-year matched cohort study. Spine 34: 2338-2345.

Coric D, Pettine K, Sumich A, Boltes MO (2013)
Prospective study of disc repair with allogeneic
chondrocytes presented at the 2012 Joint Spine Section

Crevensten G, Walsh AJ, Ananthakrishnan D, Page
disc cell therapy for regeneration: mesenchymal stem cell
implantation in rat intervertebral discs. Ann Biomed Eng
32: 430-434.

Fazzalari NL, Costi JJ, Hearn TC, Fraser RD, Vernon-
Roberts B, Hutchinson J, Manthey BA, Parkinson IH,
Sinclair C (2001) Mechanical and pathologic consequences
of induced concentric annular tears in an ovine model. Spine
26: 2575-2581.

Fremont AJ, Peacock TE, Goupille P, Hoyland JA,
intervertebral disc in chronic back pain. Lancet 350: 178-
181.

Ganey T, Hutton WC, Moseley T, Hedrick M, Meisel
HJ (2009) Intervertebral disc repair using adipose tissue-
derived stem and regenerative cells: experiments in a
 canine model. Spine 34: 2297-2304.

Grad S, Alini M, Eglin D, Sakai D, Mochida J, Mahar
for Intervertebral Disc Regeneration, Morgan & Claypool,
San Rafael, CA.

Guterl CC, See EY, Blanquer SB, Pandit A, Ferguson
SJ, Benneker LM, Grijpma DW, Sakai D, Eglin D, Alini
M, Iatridis JC, Grad S (2013) Challenges and strategies
in the repair of ruptured annulus fibrosus. Eur Cell Mater

Henriksson HB, Svanvik T, Jonsson M, Hagman M,
Horn M, Lindahl A, Brisby H (2009) Transplantation of
human mesenchymal stem cells into intervertebral discs in

Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe
T, Serigano T, Tamura F, Sakai D (2008) Transplantation of
mesenchymal stem cells in a canine disc degeneration

transplantation in lumbar spine disc degeneration disease.
Eur Spine J 17 Suppl 4: 492-503.

Hoppe S, Quirbach S, Mamisch TC, Krause FG,
Werlen S, Benneker LM (2012) Axial T2* mapping in
intervertebral discs: a new technique for assessment of

Iatridis JC, Hecht AC (2012) Does needle injection
cause disc degeneration? News in the continuing debate
regarding pathophysiology associated with intradiscal

Iatridis JC, Nicoll SB, Michalek AJ, Walter BA,
Gupta MS (2013) Role of biomechanics in intervertebral
disc degeneration and regenerative therapies: what needs
repairing in the disc and what are promising biomaterials

Illien-Junger S, Patappa G, Peroglio M, Benneker
LM, Stoddart MJ, Sakai D, Mochida J, Grad S, Alini M
(2012) Homing of mesenchymal stem cells in induced
degenerative intervertebral discs in a whole organ culture

Development of degenerative spondylolisthesis of the lumbar
spine after partial discectomy. Comparison of laminotomy,
discectomy, and posterolateral discectomy. Spine 20: 599-
607.

Kang JD (2010) Does a needle puncture into the
annulus fibrosus cause disc degeneration? Spine J 10:
1106-1107.

Meisel HJ, Siodla V, Ganey T, Minkus Y, Hutton WC,
therapeutics: disc chondrocyte transplantation. A treatment
for degenerated or damaged intervertebral disc. Biomol
Eng 24: 5-21.

Melrose J, Roberts S, Smith S, Menage J, Ghosh
P (2002) Increased nerve and blood vessel ingrowth
associated with proteoglycan depletion in an ovine annular
lesion model of experimental disc degeneration. Spine
27: 1278-1285.

results of microlumbar discectomy. Br J Neurosurg 8:
319-326.

Editor’s Note: All comments/questions by the reviewers were answered by making changes in the text. There is hence no Discussion with Reviewers section.