Towards quantification of the brain’s sheet structure in diffusion MRI data

Published in:

Published: 01/01/2015

Publisher's Version
Published: 01/01/2015

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Towards Quantification of the Brain’s Sheet Structure in Diffusion MRI Data

Chantal M.W. Tax*,1, Tom C.J. Dela Haije†,1, Andrea Fuster†, Remco Duits†, Max A. Viergever‡, Evan Calabrese‡, G. Allan Johnson‡, Luc M.J. Florack†, and Alexander Leemans†

* Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands. † Imaging Science & Technology, Eindhoven University of Technology, Eindhoven, the Netherlands. ‡ Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA

Abstract—The recent hypothesis on the occurrence of sheet structure in the brain has posed many questions to the diffusion MRI (dMRI) community as to whether this structure actually exists and can be measured with dMRI. In this work, we exploit the capability of the discrete Lie bracket to infer information on the existence of sheet structure in real dMRI data.

I. INTRODUCTION

The question whether our brain’s structure is best reflected by a three-dimensional manifold or by a set of discrete Lie bracket paths is a fundamental question in the field of diffusion MRI (dMRI). The Lie bracket is a fundamental concept in Lie algebra, and its application to dMRI data has been the subject of much research.

A. Lie bracket theory

The Lie bracket $[V, W]_p$ is a measure of the deviation from p when trying to move around in an infinitesimal loop along the integral curves of the fields V and W (Fig. 1). If and only if $[V, W]_p$ lies in the plane spanned by V_p and W_p, i.e., when the normal component of the Lie bracket [3] $[V, W]_p = [V, W]_p |_{h_1} = V_p \times W_p$, the vector fields form a sheet at p [6]. The Lie bracket can be approximated by various difference vectors r_{h_1, h_2} according to

$$r_{h_1, h_2} = h_1 h_2 [V, W]_p + \Delta(h_1, h_2),$$

where h_1 and h_2 are walking distances and $\Delta(h_1, h_2)$ is an error term that scales with h_1 and h_2. See references [5,7] for details.

B. Implementation and experiments

Starting from point p in the data, we assign two fiber orientation distribution function (fODF) peaks [4] as representative members of vector fields V and W. We use nearest neighbor streamline tractography using steps of size Δh to find the difference vectors. Each difference vector is based on 4 consecutive tractography paths 2 (Fig. 1) of up to $h_{max} = \Delta h$ streamline steps. At each streamline step the local vectors are assigned to one of the fields based on their cosine similarity with the vectors at the previous point. Tracts passing through voxels with only one peak are ignored. Subsequently, $[V, W]_p$ is calculated as an indicator of sheet structure in a simulated dMRI dataset that was known to represent a sheet [5,8] and in high resolution mouse brain data.

II. THEORY AND METHODS

A. Lie bracket theory

The Lie bracket $[W, V]_p$ is a measure of the deviation from p when trying to move around in an infinitesimal loop along the integral curves of the fields V and W (Fig. 1). If and only if $[V, W]_p$ lies in the plane spanned by V_p and W_p, i.e., when the normal component of the Lie bracket [3] $[V, W]_p = [V, W]_p |_{h_1} = V_p \times W_p$, the vector fields form a sheet at p [6]. The Lie bracket can be approximated by various difference vectors r_{h_1, h_2} according to

$$r_{h_1, h_2} = h_1 h_2 [V, W]_p + \Delta(h_1, h_2),$$

where h_1 and h_2 are walking distances and $\Delta(h_1, h_2)$ is an error term that scales with h_1 and h_2. See references [5,7] for details.

B. Implementation and experiments

Starting from point p in the data, we assign two fiber orientation distribution function (fODF) peaks [4] as representative members of vector fields V and W.

II. THEORY AND METHODS

A. Lie bracket theory

The Lie bracket $[W, V]_p$ is a measure of the deviation from p when trying to move around in an infinitesimal loop along the integral curves of the fields V and W (Fig. 1). If and only if $[V, W]_p$ lies in the plane spanned by V_p and W_p, i.e., when the normal component of the Lie bracket [3] $[V, W]_p = [V, W]_p |_{h_1} = V_p \times W_p$, the vector fields form a sheet at p [6]. The Lie bracket can be approximated by various difference vectors r_{h_1, h_2} according to

$$r_{h_1, h_2} = h_1 h_2 [V, W]_p + \Delta(h_1, h_2),$$

where h_1 and h_2 are walking distances and $\Delta(h_1, h_2)$ is an error term that scales with h_1 and h_2. See references [5,7] for details.

B. Implementation and experiments

Starting from point p in the data, we assign two fiber orientation distribution function (fODF) peaks [4] as representative members of vector fields V and W.

Fig. 3 Mouse brain dMRI data with $b = 4000 s/mm^2$, measured with 120 different directions and 11 b-values, 0 images, voxel size 0.043 mm isotropic. (a) Direction encoded fractional anisotropy map. (b) $[V, W]_p$ between two largest fODF peaks, with $\Delta h = 0.043 mm$ and $h_{max} = 5$. The blue location shows a region with low $[V, W]_p$, the yellow location one with noisy $[V, W]_p$. (c) The corresponding DTI geometry map.

1These authors contributed equally to this work.

2In this work we consider the difference vector $(\Phi^n \ast \Phi^n \ast \Phi^n \ast \Phi^n) (p) = p - (\Phi^n \ast \Phi^n \ast \Phi^n \ast \Phi^n) (p)$, and $(\Phi^n \ast \Phi^n) (p) = (\Phi^n \ast \Phi^n) (p)$, where the flow operator $\Phi^n (p)$ denotes moving a distance x along the integral curve of vector field X starting from point p.

REFERENCES