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Direct numerical simulation (DNS) databases are compared to assess the accuracy
and reproducibility of standard and non-standard turbulence statistics of incompress-
ible plane channel flow at Re; = 180. Two fundamentally different DNS codes are
shown to produce maximum relative deviations below 0.2% for the mean flow, below
1% for the root-mean-square velocity and pressure fluctuations, and below 2% for the
three components of the turbulent dissipation. Relatively fine grids and long statistical
averaging times are required. An analysis of dissipation spectra demonstrates that
the enhanced resolution is necessary for an accurate representation of the smallest
physical scales in the turbulent dissipation. The results are related to the physics of
turbulent channel flow in several ways. First, the reproducibility supports the hith-
erto unproven theoretical hypothesis that the statistically stationary state of turbulent
channel flow is unique. Second, the peaks of dissipation spectra provide information
on length scales of the small-scale turbulence. Third, the computed means and fluc-
tuations of the convective, pressure, and viscous terms in the momentum equation
show the importance of the different forces in the momentum equation relative to
each other. The Galilean transformation that leads to minimum peak fluctuation of
the convective term is determined. Fourth, an analysis of higher-order statistics is
performed. The skewness of the longitudinal derivative of the streamwise velocity is
stronger than expected (—1.5 at y™ = 30). This skewness and also the strong near-wall
intermittency of the normal velocity are related to coherent structures. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4861064]

. INTRODUCTION

In 1987, Kim, Moin, and Moser' performed the first Direct Numerical Simulation (DNS) of
fully developed incompressible turbulent channel flow. The Reynolds number based on friction
velocity and channel half width was 180. The simulation was repeated in 1999 by Moser, Kim, and
Mansour? with the same numerical method and a slightly different computational domain. In that
paper, referred to as MKM hereafter, the results were compared with DNS of turbulent channel flows
at higher Reynolds numbers. The databases of the simulations presented in MKM were published on
the world-wide web in 2001. These two pioneering papers belong to the most influential papers in
the field of DNS of turbulent flows. Since 1987 many papers on DNS of turbulent channel flow have
appeared in the literature, see, for example, Refs. 3-9, see also the review by Kim.!” The transition
process from laminar to fully developed channel flow has also been simulated by means of DNS,
see, for example, Refs. 11 and 12.

As far as we know, there exists no systematic comparison of different DNS databases of
fully developed turbulent channel flow at the same Reynolds number. A Reynolds number appearing
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TABLE I. Overview of publicly accessible DNS databases and four databases presented in this paper. The domain lengths
are normalized with channel half-width H. The maximum grid sizes are listed in wall units. The averaging time 7 is
normalized with H/u, . FC represents a Fourier-Chebyshev method and FD a staggered finite difference method (fourth-order
in streamwise and spanwise, second-order in normal direction).

Domain Grid (max) Centerline values
Database Re; Ly L. hf h;’ h7 T Method U Upms Urms  Wrms

74

Moser, Kim, and Mansour? 178.1 4x %n 177 44 59 ? FC 18.30 0.8140 0.6118 0.5893
Abe, Kawamura, and Matsuo* 180.0 12.8 64 9.0 59 45 40 FD 18.64 0.8054 0.6368 0.6041

Del Alamo and Jiménez’ 185.6 12m 4m 137 6.1 69 50 FC 18.28 0.7892 0.6062 0.6068
Kozuka, Seki, and Kawamura® 180.0 6.5 32 0.56 097 1.1 3.1 FD 18.55 0.8084 0.6410 0.6280
FD1 (this paper) 180.0 4x %T[ 88 44 59 1300 FD 18.42 0.7976 0.6154 0.6103
FD2 (this paper) 180.0 4n %n 44 22 29 200 FD 18.28 0.7949 0.6162 0.6139
S1 (this paper) 180.0 4m %n 177 44 59 1lel FC 18.25 0.7974 0.6149 0.6151
S2 (this paper) 180.0 4rm %T[ 59 29 39 200 FC 18.28 0.7971 0.6166 0.6140

frequently in the literature of DNS of turbulent channel flow is Re; ~ 180. An overview of simulations
for domain sizes and resolutions of this Reynolds number is shown in Table I. The first four
simulations have been performed by others and the statistical databases are publicly accessible on
internet. The last four simulations are the simulations presented in this paper, and corresponding
databases are available at www.vremanresearch.nl.

The centerline values of four standard statistical profiles have been included in Table I. There
appears to be a large variation among the results reported in the literature. For example, the variation
of the reported centerline values of the root-mean-square of the spanwise velocity fluctuation among
different cases is approximately 10%. It is not evident at all that the variation is caused by the
different domain sizes used in the simulations. A first question that arises is whether for a given
domain size a unique statistical solution exists. Although this uniqueness is usually assumed, it is
not a theoretically proven consequence of the Navier-Stokes equations. A second question that arises
is whether in the known databases the resolution was sufficiently fine and the averaging time was
sufficiently large to expect a relative accuracy of basic statistical profiles of say less than 1%. Since
DNS is a simulation technique that solves by definition all physical scales, the aim to predict basic
quantities within 1% is reasonable.

To address these research questions, we have performed DNS of turbulent channel flow at
Re; = 180 in the same domain as MKM (the most cited DNS database of this flow). Two different
codes were used, indicated by FD (finite difference) and S (spectral). The finite difference code is
staggered and pressure-based (projection method). The spectral code is an independent implementa-
tion of the non-pressure-based Fourier-Chebyshev method used in MKM. For each code long-time
simulations were performed on two grids, a grid compliant with standard resolution requirements
and a refined grid.

There are a number of reasons why statistical results obtained from two simulations performed at
the same Reynolds number could differ: (1) the streamwise and spanwise lengths of the computational
domain, (2) statistical errors, (3) discretization errors, (4) programming errors, (5) non-uniqueness
of a statistically stationary state, and (6) forcing method. To reduce the effect of the streamwise
and spanwise lengths of the computational domain, simulations in computational domains larger
than those in Refs. 1 and 2 have been reported by Del Alamo and Jiménez’ and others.®® It is not
yet clear how large the domain should be to have no influence on turbulence statistics anymore (if
possible at all). The subject of the present paper is not the issue how large the computational domain
should be, but the analysis of the other five possible causes (2—6). Due to the required computational
effort, this analysis can be performed best if the domain size and also the Reynolds number are
not too large. Therefore, Re; = 180 and the domain used by MKM were chosen. A comparison of
results obtained with different codes is useful in a study of reproducibility. Besides, a systematic
comparison between results obtained with different codes provides a quantification of the maximum
effect of possible programming errors.

In the present paper we will present detailed results of the last four databases in Table I and
compare the results with those of MKM where possible. In Sec. II, we will describe the numerical
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methods and the simulation cases in more detail. In Sec. III, we will compare the common type
of profiles, profiles of mean flow, the Reynolds stresses, the pressure variance, and the diagonal
components of the dissipation. In Sec. IV, we will compare velocity and pressure gradient spectra
(velocity and pressure spectra multiplied with the square of the wavenumber). In Sec. V, we will
present the statistical profiles of the distinct terms in the momentum equations. In Sec. VI, we
will consider higher-order statistical data, such as velocity derivative skewness, and skewness and
flatness of primary fluctuations. Finally, we will formulate the conclusions in Sec. VII.

Il. DEFINITION OF SIMULATIONS

The direct numerical simulations are simulations of incompressible plane channel flow at
Re, = 180 in the domain 47 H x 2H x %H . The streamwise, normal, and spanwise directions are
denoted by x, y, and z, respectively. The streamwise, normal, and spanwise velocity components are
denoted by u, v, and w, respectively. In the simulations H = 1. Periodic boundary conditions are
used in the streamwise and spanwise directions, while no-slip boundary conditions are applied at the
two walls. Unless mentioned otherwise, the simulations use forcing by constant pressure gradient,
represented by the forcing term (1, 0, 0) in the vector momentum equation. As a consequence,
u, = (vdu/d y)llu/ azll = 1 if the size of the time averaging interval T approaches infinity. The viscosity
v equals 1/180, such that the Reynolds number Re, = u, H/v equals 180 and y* = 180y, with respect
to the left-wall, which is located at y = 0.

First, the finite difference method is described. It was used for simulations FD1 and FD2,
specified in Table I. The finite difference code is based on a staggered grid.'> The grid in the
homogeneous directions (x and z) is uniform. The grid in the normal direction is nonuniform and
smoothly stretched with the use of the tangent hyperbolic function. The time-discretization is a fully
explicit second-order three-stage Runge-Kutta method with stage coefficients 1/3, 1/2, and 1, in fact
the three-stage variant of the four-stage method proposed in Ref. 16. The pressure-based projection
method is embedded within each stage, which means that an intermediate update of the velocity is
obtained using the convective and viscous terms only, then a Poisson equation for the pressure is
solved (with a direct method in this case), and then the new stage velocity is obtained by subtracting
the pressure gradient contribution from the intermediate velocity. The finite difference simulations
use a simple initial condition, a function of y plus a divergence-free large-amplitude two-modal
sinusoidal perturbation. Turbulence develops after several time units, the statistical averaging is
started at time ¢t = 10H/u,.

The spatial discretization is fourth-order in the homogeneous directions only, the discretization
in the normal direction is the standard second-order accurate method, like in Ref. 14. The convective
terms are discretized in the momentum-conserving divergence form. The divergence form of the
convective terms requires velocities to be interpolated from one staggered location to the cell-face
of the same or another velocity component. All interpolations in the y-direction are second-order
accurate (weights % and %), but all interpolations in the x- and z-direction are fourth-order accurate.
For example, the discretization of d(uu)/dx at grid point i (i is the index of the x-direction) is defined
by

9 1
WHWW%_a )=

), 1
i-3" " 24h, (ai+% ai—%) @

where a denotes the flux uu in the u-equation. The velocity u in a = uu is given by the fourth-order
interpolation

1= %(ui +ui1)— %(Miﬂ —u;i-2). 2
This convective scheme is different from the skew-symmetric fourth-order staggered methods used
in Refs. 4, 14, and 15. It is also different from the rotational form, which has been reported to
be relatively inaccurate in combination with a second-order finite difference method in the wall
normal direction.!” The present relatively straightforward convective scheme was chosen, because
it was found to produce approximately two times lower truncation error than the corresponding
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skew-symmetric scheme on the same grid. Unlike the skew-symmetric and rotational forms, the
present convective scheme allows some truncation error in the energy conservation property. It is
nonetheless a robust method in cases where the effect of the convective truncation error is small
compared to the physical dissipation. DNS is such a case. As a validation the energy produced
by the convective scheme (integral of innerproduct of convective term and u) was computed and
compared with the dissipation by the viscous term (integral of innerproduct of viscous term and w). It
appeared to be very small at all times, about 0.2% of the dissipation by the viscous term in case FD1
and about 0.05% in case FD2. With respect to the viscous terms, the y-derivatives are discretized
with the standard three-point stencil, while the x- and z-derivatives in the velocity Laplacians are
discretized with the compact fourth-order stencil (five points), which is a Richardson extrapolation
of the second-order three-point stencil.'> To compute the viscous terms near the wall fourth-order
extrapolation of the tangential velocities across the boundary is used. For the normal velocity and
pressure no extrapolation is required.

The number of cells in cases FD1 and FD2 equals 256 x 128 x 128 and 512 x 256 x 256,
respectively. The time step in FD1 and FD2 is 0.001 and 0.0005, respectively. The minimum grid
size, the size in the normal direction of the first pressure cell adjacent to the wall, is h; = (.98 for
FD1 and h;L = 0.49 for FD2. To investigate the influence of statistical averaging, a variant of FD1
is included, FD1a, which is the same as FD1, except for the statistical averaging. Like FD2, FDla
is averaged over a time interval with length 7= 200H/u,, while T = 1300H/u, is used in case FD1
(see Table I).

In simulations S1 and S2, also listed in Table I, the spectral method used in MKM? and de-
scribed in Ref. 1 is applied. The present implementation of that method is the code also used
in Refs. 18, 19. The spectral method is based on the equations of the normal vorticity compo-
nent and the Laplacian of the normal velocity; as such this method is not pressure-based. The
pressure is obtained by solving a Poisson equation in a post-processing step. The method is a
spectral tau method with Fourier modes in the homogeneous directions and Chebyshev modes
in the normal direction. The code uses dealiasing in the homogeneous directions, by means of
the 3/2-rule. The time integration is second-order accurate and performed with the hybrid ex-
plicit/implicit three-stage Runge-Kutta method specified in Ref. 20. The number of grid points used
in case S1 is the same as in MKM (128 x 129 x 128), while it is 384 x 193 x 192 in case
S2. The time step in S1 and S2 is 0.0005 and 0.00025, respectively, a factor two smaller than
in the FD cases. A spectral method usually requires a smaller time step for numerical stability
than finite difference methods. Consider, for example, the convective derivative cd(exp (ikx))/dx,
where ¢ is a constant. The numerical representation is given by ick’exp (ikx) where k' is the mod-
ified wavenumber which is a function of wavenumber k. The modified wavenumber depends on
the spatial discretization; for the spectral method £ = k. A condition CFL < 1 for all wavenum-
bers implies Af < 1/(cmax (k')). For the present fourth-order finite difference method max (k')
= 0.457/h,, while for the spectral method max (k') = 7/h,; thus, the spectral method requires a
smaller At.

Simulations S1, S2 and the finite difference simulations are performed with a constant (pressure
gradient) forcing, while in MKM a time-dependent forcing was applied to keep the volume flow
constant. To address the effect of the different forcing, a variant of S1 is included, S1a, which is the
same as S1, except that in Sla the volume flow is constant and the forcing time-dependent, like in
MKM. In the spectral case the forcing term appears in the equation for mode (0, 0, 0). Unlike the
other modes, this mode is not solved from the vorticity and velocity Laplacian equation but from the
momentum equations.

lll. TURBULENCE STATISTICS OF STANDARD QUANTITIES

In this section the turbulence statistics of a range of common quantities extracted from the
simulations FD1, FD2, S1, and S2 will be shown and compared with MKM. The quantitative
differences between the different databases will also be shown. Profiles of the additional two
simulations, FD1a and Sla, defined in Sec. II, will not be included into the figures, but the results
will be discussed.
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The statistical mean (or Reynolds average) at position y; is implemented as the combined
average over time and the two x-z planes at y = y; and 2H — yy, taking into account the appropriate
centerline symmetry condition for the profile under consideration. Each variable can be split into a
mean (averaged) and fluctuating part, for example, u = u + u’, where u (also U) is the mean and v’ is
the fluctuating part. The standard deviation, or root-mean-square (rms) value of the fluctuating part,

1/2

is defined by u,,,; = wu' ", which is for brevity also referred to as the fluctuation of u. Similarly,

1/2 12 d =12
s Wrps = WW > and Ppps = PP P

the fluctuations of v, w, and p are defined by v,,,s = v’
respectively. The dissipation in the transport equation of u’u’ is defined by €, = 2v|Vu/|2, and
similarly €, and €,, are defined. The turbulent dissipation in the kinetic energy equation is defined
by € = (€, + €, + €,)/2.

Most statistics involve the evaluation of products. In the spectral cases S1 and S2, these products
are computed in physical space, after extending the wavenumber range with the 3/2-rule in the
homogeneous directions. In fact each quantity used in physical space is obtained by the inverse
Fourier transform using the 3/2-rule in homogeneous directions. The number of grid nodes in
physical space is therefore also multiplied with 3/2 in the homogeneous directions. In the spectral
cases, the products and the planar average of any required quantity are computed on this grid. In
the finite difference cases, the original normal location (central or staggered) is maintained in the
statistics where possible.

In the finite difference cases, the pressure is defined at cell centers and the velocity components
at cell faces. This makes the evaluation of the turbulent dissipation nontrivial. It is important to com-
pute the dissipation without throwing away small-scale information by unnecessary interpolations.
Consistent with the discretization of the velocity Laplacians in the Navier-Stokes code, the first-order
velocity derivative du;/dx; in the dissipation has been obtained on the appropriate location half-way
two (staggered) points in the x-direction where the velocity u; is defined. For example, du/dx in the
post-processing is computed at location i + %, using the four values u; _ |, u;, u; + 1, and u; 1 ». This
procedure implies that the nine post-processed velocity derivatives are defined at different locations.
To find the dissipation at cell centers, the nine profiles of the variances of the velocity derivatives
are determined first, without any interpolation. Some of these profiles are defined at y, (the y-values
of the cell centers) and others are defined at y, (the y-values of the cell faces pointing in the normal
direction). Subsequently, the latter profiles are interpolated to y.-locations by averaging over the two
adjacent y,-points.

For the cases with constant pressure gradient forcing the numerical value of u, is very close
to 1: 1.00000 for FD1 (T = 1300), 1.00007 for FDla (T = 200), 0.99996 for FD2 (T = 200),
1.00043 for S1 (T = 161), and 0.99990 for S2 (T = 200). The statistics of these five simulations
have not been normalized with the computational u,. In the case with constant volume flow (S1a)
the computational value of u; is 0.995616 (T' = 200), such that Re, = 179.2. The statistics of Sla
have been normalized with the computational «, before comparison with S1.

The left-hand sides of Figs. 1-4 show the profiles of the mean streamwise velocity (Fig. 1),
the fluctuations of u, v, w (Fig. 2), the fluctuation of p (Fig. 3), and the dissipations €,, €,, and €,
(Fig. 4). On the scale of these figures, we observe several small but noticeable differences between
S1, S2, FD1, FD2, and MKM. In the figures of the normal and spanwise intensities, we observe
relatively large differences between S1, S2, FDI1, and S2 on the one hand and MKM on the other
hand.

To investigate the differences between the five cases in more detail we express the differences
between the curves as relative deviations. The right-hand sides of Figs. 1-4 show the relative
deviations between case A and simulation S2, for any of the five cases A shown in the left-hand side
of the figure. The relative deviation of a quantity Q of case A with respect to case S2 is defined by

S Q[A;S2](y) = (Qa(y) = Os52(¥))/ @ s2(y) 3)

The trivial deviation §Q[S2; S2](y) equals zero. The deviations were computed after interpolation of
the profiles to a uniform grid, y*(j) = j for integers 1 <j <180. A cubic spline interpolation routine
was used. However, the curves on the left-hand sides of the figures are the original (non-interpolated)
profiles.
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FIG. 1. Mean streamwise velocity for FD1 (thin solid), FD2 (thick solid), S1 (thin dashed), S2 (thick dashed), and MKM
(thick dashed-dotted). Left: U. Right: the corresponding relative deviations §U[FD1; S2], SU[FD2; S2], §U[S1; S2], U[S2;
S2], and SUIMKM; S2] (%).

To estimate the statistical uncertainty of profiles obtained by averaging over an interval of about
200 time units, case FD1, which is the case that requires the smallest computational effort per time
step, was simulated for a very long time (more than 1300 time units). From the same run statistics
were computed for 7 = 200; these results are referred to as Fla. Since FD1 (7 = 1300) has most
probably a much lower statistical error than FD1a (7T = 200), the maximum statistical relative error
of a quantity Q in case FD1a can be estimated by the maximum of the absolute value of the relative
difference between the two profiles:

so = max|§ Q[FDI1a;FDI1](y)|. 4)

Although simulation FD1 is not the most accurate of the simulations presented in this paper,
simulation FD1 is still quite accurate. The maximum statistical error of simulation FD1a (sp) is
therefore expected to be a suitable estimate of the statistical error of the profiles of FD2 and S2,
which, like those of FD1la, were obtained for 7 = 200. For each quantity Q in this section, the
statistical uncertainty so is shown as an error bar s, in the corresponding figure with the relative
deviations. The numerical values of sy are shown in the first line of Table II. The statistical error
of FD1 (T = 1300) is most probably much smaller than s, while the statistical uncertainty of case
S1 is expected to be slightly larger than sp (in case S1 the averaging interval is somewhat shorter
than 200 time units). Although the statistical averaging time was not reported in MKM, the present
comparison indicates that the statistical uncertainty of the MKM case is probably larger than s.

An alternative approach to compute a statistical uncertainty is to partition the time interval of
200 time units into n equally sized parts and to compute the average for each part.> An unbiased
estimate of the statistical error of the total average is then given by the standard deviation of the
partial results divided by the square root of n — 1. However, that estimate is only valid if the partial
averages are uncorrelated, which is not necessarily the case,” since the turbulence is temporally
correlated.

Figure 1 shows that for each case the relative deviation with respect to S2 is smaller than 1%.
If the deviation for cases FD1, FD2, and S1 is larger than 2s, the deviation is probably not only
a statistical effect. The deviation between FD2 and S2 is smaller than 25y everywhere, i.e., the
deviation between the two fine grid runs is within the statistical tolerance, which is about 0.2% in
case of the mean flow.

The relative deviations of the velocity and pressure fluctuations (Figs. 2 and 3) are much larger
than those of the mean flow. The deviations for the standard resolution cases (FD1, S1, MKM)
are clearly larger than 1% at several locations, at some locations much larger. Since the statistical
difference between FD1 and S2, or between S1 and S2, is not expected to be larger than 25y, which
is less than 0.8% for the four fluctuations, the deviations of FD1 and S1 cannot be attributed to the
statistical error only. However, the maximum deviations between FD2 and S2 are much smaller,
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FIG. 2. Velocity fluctuations for FD1 (thin solid), FD2 (thick solid), S1 (thin dashed), S2 (thick dashed), and MKM (thick
dashed-dotted). Left: u,s (top), vyms (middle), and w,,,s (bottom). Right: the corresponding relative deviations §Q[FD1;
S2], §Q[FD2; S2], §Q[S1; S2], §Q[S2; S2], and §Q[MKM; S2] (%), where Q is uys (top), Vyms (middle), or w,,s (bottom).

0.4%, 0.6%, 0.4%, and 0.5% for the primary fluctuations (s, Vrms> Wrms, and Py, r€SPECtively).
The deviations for the dissipation profiles (Fig. 4) are generally larger than those for the primary
fluctuations. However, also for the dissipations, the deviation between FD2 and S2 is the smallest
one of the nontrivial deviations: 0.8%, 1.8%, and 1.5% for €,, €,, and €, respectively.

Table II contains the absolute maxima of the relative deviations shown in Figs. 1-4. It is clear
that cases FD2 and S2 are more accurate than the other cases. It seems safe to conclude that the
maximum relative error in cases FD2 and S2 is below 0.2% for the mean flow, below 1% for the
fluctuations, s, Vrmss Wrms, and p,,s, and below 2% for €, €, and €,,. The results in Secs. [IV-VI
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FIG. 3. Pressure fluctuation for FD1 (thin solid), FD2 (thick solid), S1 (thin dashed), S2 (thick dashed), and MKM (thick
dashed-dotted). Left: p,,s. Right: the corresponding relative deviations 8p,,s[FD1; S21, 8pyms[FD2; S21, 8psms[S1; S2],
3prms[S2; S2], and §ps[MKM; S2] (%).

will confirm that the difference between FD2 and S2 is much smaller than the difference between
FD1 and S1, between FDI1 and FD2, and between S1 and S2. This reproducibility supports the
hypothesis that the Navier-Stokes solutions for turbulent channel flow in a given domain share the
same unique statistically stationary state.

We will finish this section with a discussion of the results obtained with fixed volume flow (S1a)
instead of the constant forcing term in the other cases, since in the MKM simulation the volume flow
was also held fixed. In Table II the maximum relative deviations between Sla and S1 and between
Sla and S2 are shown (lines 7 and 8); constant forcing is used in cases S1 and S2. The numbers
appear to be comparable or somewhat smaller than the maximum relative deviation between S1 and
S2 (line 4). In particular, the differences between Sla and S1 (line 7) are generally smaller than the
differences between MKM and S1 (line 4). Thus, the forcing method is most probably not the main
reason for the differences observed between MKM and the present runs in Figs. 1-4.

IV. SPECTRA

Streamwise spectra premultiplied with streamwise wavenumber k2 are shown in Fig. 5,
for u, v, w, and p. Spanwise spectra premultiplied with spanwise wavenumber kz2 are shown in
Fig. 6. All spectra shown apply to y* = 30, which was found to be a representative value, for the
phenomena observed. In Fig. 5, the symbols E,,, E,,, E,,, and E,, represent the standard stream-
wise velocity and pressure spectra. The integral of k2 E,,,, over k, is proportional to the cross-sectional
average of (du’/9x)? = (du/dx)?. Analogous relations hold for the other variables. For this reason
the premultiplied velocity spectra are also called dissipation spectra. The premultiplied pressure
spectrum in Fig. 5 gives information of the relevance of small scales in —dp/dx, one of the terms in
the momentum equation.

The tails of the spectra of the spectral simulations S1 and MKM display (numerically induced)
cusps (Fig. 5). The tail values have not dropped much, relative to the peak values. Consider, for
example, kf E,, where the tail values of S1 and MKM are more than 10% of the peak values, so the
drop is less than an order of magnitude. For sufficiently high k (k — oo, infinite resolution) not only
the velocity spectra but also the dissipation spectra are expected to converge (exponentially) to zero.
If a spectrum is still large for the highest resolved k., this is an indication that the corresponding
quantity is not fully resolved.

To clarify this further Fig. 7 shows the first two spectra of Fig. 5 without the logarithmic scaling
of the axes. It is clear that not all wavenumbers contributing to these quantities are resolved in cases
FD1 and S1. Since the high wavenumber contributions do not fit on the grid, the spectra of S1 have
cusps in the tails. The tails of the finite difference spectra do not contain cusps but fall off sharply,
probably because the finite difference operator in the convective terms, Eq. (1), acts as an implicit
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FIG. 4. Components of the dissipation for FD1 (thin solid), FD2 (thick solid), S1 (thin dashed), S2 (thick dashed), and MKM
(thick dashed-dotted). Left: €, (top), €, (middle), and €,, (bottom). Right: the corresponding relative deviations s Q[FD1; S2],
SQ[FD2; S2], §Q[S1; S2], §Q[S2; S2], and §Q[MKM; S2] (%), where Q is €, (top), €, (middle), or €,, (bottom).

filter over the nonlinear transfer to the highest wavenumbers. However, also the spectra of FD1 are
too high and have too shallow slope in a region between peak and tail. The fortunate consequence of
these overestimations at resolved wavenumbers is that FD1 and S1 do provide reasonable estimates
for the integral of the spectrum, which is via Parseval’s theorem related to the integral of the square
velocity derivative considered. Surprisingly, the premultiplied pressure spectra of S1 and FD1 hardly
display overestimated contributions at large wavenumbers (except in the MKM case).

In summary, above figures show that the increased resolution in cases FD2 and S2 leads to better
spectra. The curves of the refined cases FD2 and S2 coincide up to large wavenumbers. Overall, the
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TABLE II. Maximum relative differences in percent for the 8 quantities shown on line 1. Line 2 is the estimate of the
maximum statistical relative error at 7 = 200. Lines 3—6 are the absolute maxima of the relative deviation curves shown in
Figs. 1-4. Lines 7 and 8 show the absolute maximum of relative differences between the case with constant volume flow
(S1a) and two cases with constant forcing.

Q U urms Urm_y wrms prms Eu EU Elﬂ
max|6Q[FDla; FD1]| 0.1 0.4 0.4 0.3 0.4 0.3 0.7 0.4
max|SQ[FD1; S2]| 0.8 1.0 1.7 2.0 2.0 2.7 52 6.3
max|6Q[FD2; S2]| 0.1 0.3 0.6 0.4 0.5 0.8 1.8 1.5
max|8Q[S1; S2]| 0.4 0.8 2.5 1.2 1.6 1.3 4.9 4.2
max|§Q[MKM; S2]| 0.3 2.7 35 2.4 3.1 2.9 5.1 5.4
max|8Q[S1a; S1]| 0.2 0.6 1.3 1.1 0.6 1.2 32 2.9
max|§Q[S1a; S2]| 0.2 0.8 1.3 0.8 1.1 2.4 2.6 2.5

spanwise spectra appear to be less critical than the streamwise spectra, but also the spanwise spectra
benefit from the increased resolution. To ensure that also the smallest scales in first-order spatial
derivatives are well-resolved it is recommended to use the maximum grid spacings of FD2 or S2 as
listed in Table I. Since these numbers are expressed in wall units (normalized with &, = H/Re.) they
can also be used as a guideline for simulations at higher Reynolds number.

The peak wavenumber of the dissipation spectrum k,.q is by definition the wavenumber at
which the slope of the energy spectrum equals —2. Since at this point the energy spectrum decreases
faster than k>3, the peak is in the dissipative range. The non-logarithmic spectra shown in Fig. 7

10" —rrr ———— ey g T

k2 Euu

1 1
10 rrrry I —— e 10" ey — e —

FIG. 5. Premultiplied streamwise spectra for u, v, w, and p, at y* = 30. FD1 (thin solid), FD2 (thick solid), S1 (thin dashed),
S2 (thick dashed), and MKM (thick dashed-dotted).
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FIG. 6. Premultiplied spanwise spectra for u, v, w, and p, at y+ = 30. FDI (thin solid), FD2 (thick solid), S1 (thin dashed),
S2 (thick dashed), and MKM (thick dashed-dotted).

indicate that the wavenumbers k > k.4 contribute considerably more to the dissipation than the
wavenumbers k < kyeqr, thus kp.q seems to closer to the beginning of the dissipative range than to
the end. It is interesting to compare the length scale that corresponds to k. with the Kolmogorov
length scale, = (v3/e)", which is the characteristic length scale of eddies dominated by viscosity.
For this purpose, we define a length scale by d = 27/kpeq, which is the wavelength corresponding
t0 kpeqr- More specifically, we define d, » = 27 /kpeak, u, x» Which is the wavelength corresponding

s E DM s 1171
w— FD2 — FD2
_____ s1 s S
""" S2 —t
===+ MKM ===+ MKM

L L
80 100 120 80 100 120

FIG. 7. Premultiplied streamwise spectra for u and v at y* = 30, without logarithmic scaling. FD1 (thin solid), FD2 (thick
solid), S1 (thin dashed), S2 (thick dashed), and MKM (thick dashed-dotted).
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TABLE III. Length scales derived from the peaks of premultiplied spectra, compared with Kolmogorov length scale 7, for
various values of y* and normalized with the wall unit §, = H/Re;. Also the Taylor microscale A (based on #’ and du’/dx)
and Re; = u'A/v are shown.

y+ d+ d+ d+ dr dr dT d+ dr at

u,x v,x w, X p.x U,z v,z w,z D,z min 77+ dmin/n Vs Re}»
10 377 226 151 151 94 94 47 94 47 1.71 28 75.9 192
30 226 151 119 126 94 108 69 84 69 1.91 36 49.3 110

90 226 133 126 133 151 151 108 126 108 2.79 39 44.5 57.8
180 188 141 126 141 151 188 126 151 126 3.69 34 433 34.4

to the Fourier wavenumber kj.q. 4, x, Which is defined as the peak wavenumber of k)%Em,. In the
same way we define a length scale d,, ;, and we do the same for v, w, and p. These eight length
scales, normalized with §, = H/Re., are shown in Table III, for various distances from the wall.
The minimum of the eight length scales is denoted by d,,,;,,- The Kolmogorov length scale, a Taylor
microscale, and the Reynolds number based on that Taylor microscale are also included. First
we observe that the peak length scales are strongly anisotropic in the near-wall region, while the
variation among the eight peak length scales is relatively small in the center of the channel. Second,
we observe that, for given y*, the minimum peak length scale of the dissipation spectra (d,u,/n) is
much larger than the Kolmogorov length scale (roughly 30 times larger). This is consistent with
high-resolution simulations of homogeneous isotropic turbulence: it can be deduced from Fig. 5 in
Ref. 21 that kpeq A 0.2 if kpeq is defined as the wavenumber at which the slope of the energy
spectrum equals —2, see also Refs. 22 and 23. This corresponds to a wavelength 27 /ky,.. ~ 107 7.
The Kolmogorov length scale seems to be at the far end of the dissipative range of turbulence. It
is remarked that the Kolmogorov length scale is based on dimensional analysis; the characteristic
length scale of eddies dominated by viscosity could be (v3/e)""* multiplied with a constant larger
than 1. Third, we observe that the Taylor microscale A, which is defined as (u'u’/(du’/dx)?)"/?, is
not larger but smaller than most peak length scales (compare, for example, d, ). This behaviour is
due to the fact that the Taylor microscale of a single wave sin (kx) is equal to 1/k, which is a factor
27 smaller than the wavelength 2 /k.

V. DISTINCT TERMS IN THE MOMENTUM EQUATIONS
The momentum equation is given by
du/dt = —u-Vu—Vp +vViu+f. (5)

The four terms on the right-hand side are the convective term, the pressure term, the viscous term,
and the forcing term. The sum of these four terms is the Eulerian acceleration. The sum of the
last three terms is the Lagrangian acceleration Du/Dt = du/dt + u - Vu. Since the forcing term
represents a streamwise pressure gradient, we include f into —Vp, and we call —Vp + f also the
pressure term. Since f is constant in the simulations considered in this section, the inclusion of f does
not affect the fluctuation of the pressure term. We found some literature on acceleration statistics
of turbulent channel flow. Measurements of the acceleration at a single value of y showed that the
Eulerian acceleration becomes much smaller in a reference frame moving with the bulk velocity.”*
In addition, profiles for the Eulerian acceleration, Lagrangian acceleration, and the convective term
were extracted from DNS at Re, = 360 and Re, = 720.2° The relevance of statistics of Eulerian and
Lagrangian accelerations in anisotropic turbulence is discussed in Ref. 26. In the following, we show
the acceleration profiles at Re; = 180, and assess their reproducibility and accuracy. In addition,
we include statistics for the separate pressure and viscous terms, and we report the velocity of the
reference frame for which the peak fluctuation of the convective terms is minimal.

The profiles of the mean and of the root-mean-square fluctuation of the three components of
each term are shown in Fig. 8, for the simulations FD1, FD2, S1, and S2. The root-mean square
fluctuation of a quantity ¢ is defined by g,,,s = ? = ? —g*. In cases FD1 and FD2, the profiles
shown are based on the same discretization as in the Navier-Stokes code. In the post-processing of
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FIG. 8. Means (left) and fluctuations (right) of convective terms (top), pressure terms (middle), and viscous terms (bottom).
The symbols u, v, and w refer to u-equation, v-equation, and w-equation, respectively. FD1 (thin solid), FD2 (thick solid),
S1 (thin dashed), and S2 (thick dashed).

S1 and S2, the products —u - Vu and the products ( — u - Vu;)?, (9p/dx;)?, (vV?u;)? and the planar
averages are computed in physical space on the 3/2-grid mentioned in Sec. III.

The mean profiles of the nine quantities are shown on the left-hand side of Fig. 8. The mean
convective term in the u-equation represents the normal derivative of the Reynolds shear stress,
—du'v’/dy, and is balanced by the sum of the mean pressure term and the mean viscous term v'V?i.
The mean convective term in the v-equation represents the normal derivative —dv’v’/dy, which is
balanced by the mean pressure term —dp/dy. For each mean quantity, the four simulations produce
identical profiles on the scale of the present figures. Compared to the mean quantities, the fluctuations
of the nine quantities, shown on the right-hand side of Fig. 8, show much stronger dependence on the
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FIG. 9. Left: fluctuations of the Eulerian acceleration, du/dt. Right: fluctuations of the Lagrangian accelerations, Du/Dt. The
symbols u, v, and w refer to u-equation, v-equation and w-equation, respectively. FD1 (thin solid), FD2 (thick solid), S1
(thin dashed), and S2 (thick dashed).

numerical method and resolution. However, the fluctuation profiles of the two refined simulations,
FD2 and S2, do coincide on the scale of these figures. Thus, the reproducibility of these statistics is
also confirmed.

Figure 8 shows that the fluctuation of the convective term is much larger than the fluctuation
of the pressure term. The fluctuation of the pressure force is generally larger than the fluctuation
of the viscous force. However, for the streamwise component in the near-wall region (y* < 30),
the fluctuation of the pressure force of the streamwise component is smaller than the viscous force.
Due to the dominance of the fluctuation of the convective term over the fluctuation of the sum
of the pressure and viscous force, the fluctuations of the Eulerian acceleration are much larger
than the fluctuations of the Lagrangian acceleration, as shown in Fig. 9. The Eulerian acceleration
was obtained as the sum of the convective, pressure, and viscous terms. The mean of the Eulerian
acceleration (the sum of the quantities shown on the left-hand side of Fig. 8) should be zero for
each component. Numerically, the absolute maximum of the mean Eulerian acceleration was less
than 0.01, for each of the four simulations, i.e., less than 0.1% of the maximum value of the mean
convective term. Thus, the mean momentum balance is accurately satisfied in each case.

That the fluctuation of Eulerian acceleration is much larger than the fluctuation of the Lagrangian
acceleration was also reported in Refs. 24 and 25, as mentioned above. The observation can be
expressed as

|Du; /Dt < |9u;/dt). (6)

This is related to Taylor’s hypothesis of frozen turbulence.?’ Taylor’s hypothesis states that du;/d¢
+U - Vu; =0, ie., |0u;/ot + U - Vu;| < |du;/0t|, which is assumed to be valid if the convection
velocity U is much larger than the velocity fluctuations. The hypothesis provides a relation between
du/dx and du/dt and has been frequently used in experiments. The convection velocity U is usually
the local mean flow, while in (6) the convection velocity is the local instantaneous velocity.

Itis well known that the solution of the Navier-Stokes equations are Galilean invariant. However,
the convective term and the Eulerian acceleration are not Galilean invariant terms, although the sum
ou/dt + u - Vuis Galilean invariant. Thus, the ratio of left-hand and right-hand sides of inequality
(6) changes after a Galilean transformation. Galilean invariance means that if the Navier-Stokes
problem is formulated for velocity @ and translated spatial coordinates X = x + c¢t, and if no-slip
boundary condition @t = —c and initial condition @iy = uy — ¢ are imposed, then the original solution
u is equal to @ + ¢, provided the translative velocity ¢ is constant. In case ¢ = (¢, 0, 0) and c is
constant, the Galilean transformed convective term is equal to

—0-Vi=—u-Vu+cdu/dx. (7

The difference between the transformed and the original convective term is just a linear term, cou/dx.
Similarly, the Galilean transformed Eulerian acceleration becomes du/dt + cou/ox.
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FIG. 10. Fluctuations of the three components of the Galilean-transformed convective term, (u — ¢) - Vu. Left: ¢ = (12.20u,,
0, 0). Right: ¢ = (18.28u4, 0, 0). The symbols u, v, and w refer to u-equation, v-equation, and w-equation, respectively. FD1
(thin solid), FD2 (thick solid), S1 (thin dashed), and S2 (thick dashed).

Figure 10 shows the fluctuations of the convective term after two Galilean transformations,
¢ = 12.20u, and ¢ = 18.28u,. For the first value of ¢, which is lower than the bulk velocity
(15.70u, ), the maximum of the three peak fluctuations of the convective term is minimal. The
second value is equal to the mean velocity at the centerline. In the first case the peak value of the
fluctuation of the convective term reduces with a factor 4 compared to the original fluctuation of
the convective term in Fig. 8. In the second case the peak is reduced with about a factor 2, but
centerline values show much larger relative reduction and become of the same order of magnitude as
the centerline values of the fluctuations of the pressure and viscous terms. It appears that a dominant
part of the fluctuation of the convective term (and of the Eulerian acceleration) in the original case
can be represented by a linear term —cou/dx.

Kim and Hussain?® computed the streamwise propagation velocity of velocity fluctuations and
other quantities in turbulent channel flow at Re; = 180. They defined the streamwise propagation
velocity of a quantity g by Ax/At, where Ax was such that the correlation between g(x + Ax, y, z, t
+ At) and g(x, y, z, ) was maximum for given At. They found that the propagation velocity of the
velocity fluctuation was equal to the mean velocity for y* > 15, while for y* < 15 the propagation
velocity was approximately 55% of the centerline velocity (=10u;). Del Alamo and Jiménez?
revisited Taylor’s hypothesis and computed a velocity profile C(y), such that for each y that ratio
of the root mean square of du/dt + C(y)du/dx and the root mean square of du/dt was minimal.
This C(y) can be interpreted as the representative convection velocity profile for which Taylor’s
approximation gives the lowest error. For Re; = 550 they found that C(y) was somewhat lower than
the mean velocity in the bulk region, but higher than the mean velocity in the near wall region. The
present constant frame velocity ¢ = 12.20u, for which the peak fluctuation of the convective term
lies in between the minimum and maximum of the propagation velocity profile of Ref. 28, and also
in between the minimum and maximum of the C(y)-profile of Ref. 29.

After Galilean transformation with the centerline velocity (¢ = U, = 18.28u,), the fluctuation
of the transformed convective term at the center (Fig. 10(right)) is approximately the same as the
fluctuation of Du/Dr at the center (Fig. 9(right)). They are not exactly the same, since the fluctuation
of 0li/d¢, the transformed Eulerian acceleration, is not zero. Let us consider the turbulence at the
centerline of the Galilean transformed case of Fig. 9(right) in some more detail. The mean velocity
of the transformed case is zero at the centerline. The fluctuation of the Lagrangian acceleration
is not modified by the transformation, thus the centerline values of Dt/ Dt are those shown in
Fig. 9(right): 4.8, 4.6, and 3.8, for ii-, U-, and W-components, respectively. The centerline values of
the fluctuation of the transformed convective term in Fig. 9(right) are 6.6, 5.3, and 5.3. The fluctuation
of dl1/dt is not shown in the figures, but the centerline values have been computed: 5.1, 4.9, and
4.8, for ii-, D-, and W-components, respectively. These values are of the same order as the centerline
values of the Lagrangian acceleration. In this context, it is interesting to mention Tennekes’ theory
on the applicability of Taylor’s hypothesis to small eddies advected by the sweeping motion of large
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eddies in flows with zero mean velocity.*® The mean velocity is zero at the centerline of the Galilean
transformed case of Fig. 9(right). The ratio of Eulerian time microscale Tr ; and Lagrangian time
microscale T, ; of i is defined as*

_1/2
Qa2

Tea/TLa = 7
(Da/Di)?

(®)
Analogous time scale ratios can be defined for © and . Tennekes*® expected Tx/T; < 1 (compare
Eq. (6)) and derived

4 1/4
§(€ DI

1 Z A .
E/L I2TU !/ N 2y
wu' + v+ D'w

€))

By substitution of the numbers mentioned in the previous paragraph into definition Eq. (8) we find
that Tg/T; equals 0.94, 0.94, and 0.79, respectively, numbers that are not much smaller than 1.
However, the evaluation of Eq. (9) leads to a much lower value, Tx/T; =~ 0.24. The computation
based on the definition of T¢/T;, indicates that the advection of small by large eddies is not impor-
tant at the centerline where Re, = 34 (Table III). The numbers of the two expressions for Tg/T},
are consistent with results from simulations of homogeneous isotropic turbulence. For Re; = 38,
Table 6 in Ref. 31 implies Tg/T; = 1/0.92 = 1.09 for definition (8), and Tx/T; = 1/4.07 = 0.25 for
approximation (9). For Re;, = 243, Table 2 in Ref. 32 implies Tg/T; = (3.54/ 17.05)2 = 0.46 for
definition (8). Thus the trend in Tennekes’ theory is correct; Tg/T;, reduces if the Reynolds number
is increased.

VI. HIGHER-ORDER STATISTICS

The non-Gaussianity of turbulence can be quantified by the value of third- and higher-order
moments of variables. The so-called skewness and flatness are derived from the third- and fourth-
order moments. For a given quantity ¢, the skewness is S(¢) = ¢3/(¢/*)*/?, and the flatness is
F(q) = q"*/(¢’*)*. If the probability distribution of ¢ is Gaussian, then S(¢) = 0 and F(g) = 3. In
this section we investigate non-Gaussianity of channel flow turbulence by considering the skewness
and flatness of several quantities.

The skewness that received most attention in turbulence research is probably the skewness
of the longitudinal velocity derivative du/dx. In homogeneous turbulence this quantity is typically
between —0.5 and —0.6,3%36 while values between —0.3 and —0.4 have been measured in a turbulent
boundary layer.’* A negative skewness means that large negative values appear more frequently than
large positive values. Negative skewness of du/dx has been related to vortex stretching and the
energy cascade from large to small scales.® No DNS-data for the velocity derivative skewness in
inhomogeneous turbulence was found in the literature.

The equation for du/dx, derived from the Navier-Stokes equations, can be written in the form

Do _ _(3_”)2 LR, (10)
Dt ox 0x

with

dvou dwou 9’p Vza_u

or 1
ox 9y  ox 0z oax2 ") ox (i

Since the first term on the right-hand side of (10) is always negative, negative du/dx tends to become
more negative and positive du/dx less positive, along fluid pathlines. Of course the complicated term
R cannot be neglected, but it is likely that the negative sign of the first term has some influence on
the statistical properties of du/dx. The mean of du/dx cannot be influenced (it is zero by definition
of the channel flow), but the probability distribution of du/dx becomes negatively skewed.

The equation for (du/dx)* can be derived from (10):
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FIG. 11. Skewness of the diagonal components of the velocity gradient tensor. Left: S(du/dx) from databases FD1, FD2, S1,
and S2. Right: S(du/dx), S(dv/dy), and S(dw/0z) from database S2.

One of the nine contributions to the turbulent dissipation is €,, = v(du’/dx)?2. Since du/dx = du'/dx
in the present channel flow configuration, the equation for €,, directly follows from (12):

d el ou
aeux +V. (ueux) = _2Suxvlj_/>2 + 2VR£» (13)

where S, denotes the skewness of du/dx. The last equation provides another reason why S, is
interesting; negative S, represents production of turbulent dissipation. The same applies to the
skewnesses of dv/dy and dw/dz.

Profiles of the skewness of the diagonal components of the velocity gradient tensor are shown
in Fig. 11. Fig. 11(left) shows that sufficient resolution is important to compute these quantities
accurately. That FD2 and S2 coincide, while FD1 and S1 are very different, is an indication that
the resolution of these two cases is sufficient to show these quantities. In the remainder of this
section only profiles of case S2 are shown. It is striking that S(du/0x) attains a value of —1.5 around
yt = 30, much more negative than the skewness in homogeneous turbulence. At the same location
the skewness of the normal diagonal component is approximately zero (Fig. 11(right)). This may be
related to the strong anisotropy of the turbulence in the near-wall region, where the fluctuation of
u' is relatively large and important near-wall structures such as streaks and streamwise vortices are
very elongated in the streamwise direction.

Figure 12 shows the contour plot of a snapshot of #’ at yt = 30. We observe structures of
high-speed and low-speed fluid, elongated in the x-direction. The second plot in Fig. 12 zooms into
a region of the first plot. Around x* = 1550, we observe a high-speed structure which has collided
into a low-speed structure, and as a result the front-side of the high-speed structure shows an inward
deformation. At that point (3u/dx)* displays a negative peak. If a structure with ' > 0 and structure
with &’ < 0 are on the same line in the x-direction, and if they approach each other, then the fast
structure is by definition behind the slow structure, and du/dx is by definition negative. The fluid in
between the structures is squeezed and pushed aside, into the y- or z-direction or into both directions.
In Fig. 12(bottom) the fluid is primarily pushed into the y-direction, which means that dv/dy is
positive and larger than dw/dz. This type of behaviour is consistent with the observation that at y*
= 30 the skewness of dv/dy is hardly negative. The pressure fluctuation tends to be positive at the
front side of the structure where —(du/dx)> peaks. This implies that the pressure strain p’(du/dx)
is negative at this point and redistributes kinetic energy to at least one of the other two velocity
components.

Figure 13 shows the skewness and flatness of the primary fluctuations, «’, v/, w’, and p’.
These have also been reported in Ref. 1, but there are quantitative differences in the flatnesses. The
flatness of the normal velocity, F(v'), converges to 29.2 on the wall, compared to 22 reported in
Ref. 1. Furthermore, F(p') peaks at 8.8 in the center region, compared to approximately 7 in



015102-18 A. W. Vreman and J. G. M. Kuerten Phys. Fluids 26, 015102 (2014)

550

500
450
400
350
300 _

I = 1
1300 1400 1500 1600 1700 1800 1900
X+

—E
1200

FIG. 12. Top: Contours of a snapshot of «’ in the plane y* = 30, normalized with the maximum [«'| in the plane, from
database FD2. The dashed (blue) contour levels are —0.2, —0.4, —0.6, and —0.8; the solid (red) contour levels are 0.2, 0.4,
0.6, and 0.8. Bottom: An enlargement of the rectangle in the top figure. The thick (black) contours are the contours of (du/dx)’
with negative values and depict the regions that lead to negative skewness of du/dx.

Fig. 18 in Ref. 1. The negative skewness of «’ at y* = 30 is consistent with the contours of the
streaky structures in Fig. 12 (regions with #’ display stronger peaks than regions with positive u’).
The flatness measures the intermittency of a quantity. A strongly intermittent signal at some
point is dormant most of the time; there are periods with activity, but most of the time the activity is
small. It is remarkable that the maximum intermittency of the velocity occurs near the wall, while
the maximum intermittency of the pressure occurs in the bulk region. The maximum flatness of the

skewness
flatness

0 30 60 20 120 150 180

FIG. 13. Skewness (left) and flatness (right) of the primary fluctuations «’, v’, w’, and p/, from database S2. F(v’) converges
t029.2 as y* — 0.
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pressure, 8.8, appears to be higher than in isotropic turbulence. According to Refs. 37-39 the flatness
of the pressure in isotropic turbulence varies between 4.7 (low Reynolds number) and 7.1 (higher
Reynolds number).

The most striking observation from the flatness profiles is that v’ is very intermittent near the
wall. The behaviour of the flatness profile of v’ is illustrated by snapshots of v’ in planes parallel
to the wall (Fig. 14): regions with noticeable normal velocity fluctuation are scarce in the viscous
sublayer (y© = 3), compared to the center of the channel (y* = 180). The normal velocity is strongly
intermittent at y© = 3 (F(v') ~ 17), while it is weakly intermittent at y* = 180 (F(v') = 3.9).
Structures with relatively large normal velocity fluctuation can hardly penetrate into the viscous
sublayer, but occasionally a vortex is pushed down toward the wall. These are typically streamwise
vortices, see, for example, the vortex centered at z+ & 245 in the vector plot in Fig. 14. The edge of
the vortex causes negative and positive normal velocity fluctuations in the viscous sublayer, which
last as long as the viscous force permits.

VIl. CONCLUSIONS

DNS databases were compared to assess the accuracy and reproducibility of standard and non-
standard turbulence statistics of incompressible plane channel flow at Re; = 180. The domain size
was the same as in Moser, Kim, and Mansour.” Two fundamentally different codes, a staggered finite
difference code (FD) and a spectral code (S), were used. Standard resolution was used in simulations
FD1 and S1, enhanced resolution was used in simulations FD2 and S2. The statistical averaging time
was long, typically 200H/u,. The maximum relative deviation between the mean flow profiles of
FD2 and S2 was about 0.1%. The maximum relative deviation between root-mean-square values of
velocity and pressure fluctuations of FD2 and S2 was about 0.6%. The maximum relative deviation
of the three components of the turbulent dissipation was about 1.8%. An analysis of dissipation
spectra demonstrated that the enhanced resolution is necessary for an accurate representation of the
smallest physical scales in the turbulent dissipation. The enhanced resolution corresponds to the
following grid-spacings in terms of channel half-width H and Re,: streamwise 6H/Re, spanwise
4H/Re., and in the normal direction 3H/Re, at the center, and about H/Re, at y© = 12. These are
the numbers for the spectral method. For the finite difference method these grid-spacings should be
multiplied with 3/4.

There are several conclusions with respect to the physics of turbulent channel flow. First, the
observed reproducibility supports the hitherto unproven theoretical hypothesis that the statistically
stationary state of incompressible turbulent channel flow is unique. Second, the length scale based
on the peaks of the dissipation spectra appeared to be much larger than the Kolmogorov length
scale, roughly 30 times. Third, the computed means and fluctuations of the convective, pressure,
and viscous terms in the momentum equation showed that the fluctuation of the convective term was
much larger than the fluctuation of the pressure force and that at most locations the fluctuation of the
pressure force was larger than the fluctuation of the viscous force. Fourth, the Galilean transformation
that leads to minimum peak fluctuation of the convective term was determined. The peak fluctuation
of the convective terms is minimum in a reference frame moving with streamwise velocity 12.20u, .
Fifth, Taylor’s hypothesis and the ratio of Eulerian and Lagrangian turbulence time scales were
discussed. Sixth, an analysis of higher-order statistics showed that the skewness of the longitudinal
derivative of the streamwise velocity is stronger than expected (—1.5 at y© = 30). The derivative
skewness was related to coherent structures. Seventh, the intermittency of fluctuations of primary
variables was discussed. The strong near-wall intermittency of the normal velocity was related to
streamwise vortices penetrating into the viscous sublayer.

1T, Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at low Reynolds number,” J. Fluid
Mech. 177, 133-166 (1987).

2R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulations of turbulent channel flow up to Re; = 590,” Phys.
Fluids 11, 943-945 (1999).

3N. D. Sandham, “Resolution requirements for direct numerical simulation of near-wall turbulent flow using finite differ-
ences,” Technical Report QMW-EP-1097, Queen Mary and Westfield College, University of London, 1994.

4H. Abe, H. Kawamura, and Y. Matsuo, “Direct numerical simulation of a fully developed turbulent channel flow with
respect to Reynolds number dependence,” ASME J. Fluids Eng. 123, 382-393 (2001).


http://dx.doi.org/10.1017/S0022112087000892
http://dx.doi.org/10.1017/S0022112087000892
http://dx.doi.org/10.1063/1.869966
http://dx.doi.org/10.1063/1.869966
http://dx.doi.org/10.1115/1.1366680

015102-21 A. W. Vreman and J. G. M. Kuerten Phys. Fluids 26, 015102 (2014)

5J. C. del Alamo and J. Jiménez, “Spectra of the very large anisotropic scales in turbulent channels,” Phys. Fluids 15,
L41-1L43 (2003).

©Z.W. Hu, C. L. Morfey, and N. D. Sandham, “Wall pressure and shear stress spectra from direct numerical simulations of
channel flow up to Ret = 1440,” AIAA J. 44, 1541-1549 (2006).

7]. Meyers and P. Sagaut, “Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale
models?,” Phys. Fluids 19, 048105 (2007).

8S. Hoyas and J. Jiménez, “Reynolds number effects on the Reynolds-stress budgets in turbulent channels,” Phys. Fluids
20, 101511 (2008).

9M. Kozuka, Y. Seki, and H. Kawamura, “Direct numerical simulation of turbulent heat transfer with a high spatial
resolution,” Int. J. Heat Fluid Flow 30, 514-524 (2009).

10y Kim, “Progress in pipe and channel flow turbulence, 1961-2011,” J. Turbulence 13, N45, 1-19 (2012).

1IN Gilbert and L. Kleiser, “Near-wall phenomena in transition to turbulence,” in Near-Wall Turbulence: 1988 Zoran Zaric
Memorial Conference (Hemisphere, New York, 1990), pp. 7-27.

12N. D. Sandham and L. Kleiser, “The late stages of transition to turbulence in channel flow,” J. Fluid Mech. 245, 319-348
(1992).

3E. E. Harlow and J. E. Welsh, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free
surface,” Phys. Fluids 8, 2182 (1965).

14y, Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, “Fully conservative higher order finite difference schemes for
incompressible flow,” J. Comput. Phys. 143, 90-124 (1998).

ISR. W. C. P. Verstappen and A. E. P. Veldman, “Symmetry-preserving discretization of turbulent flow,” J. Comput. Phys.
187, 343-368 (2003).

16 A Jameson and T. J. Baker, “Solution of the Euler equations for complex configurations,” AIAA Paper No. 83-1929, 1983.

17K Horiuti and T. Itami, “Truncation error analysis of the rotational form for the convective terms in the Navier-Stokes
equation,” J. Comput. Phys. 145, 671-692 (1998).

187 G. M. Kuerten, C. W. M. van der Geld, and B. J. Geurts, “Turbulence modification and heat transfer enhancement by
inertial particles in turbulent channel flow,” Phys. Fluids 23, 123301 (2011).

198 J. Geurts and J. G. M. Kuerten, “Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted
from direct numerical simulation of turbulent channel flow,” Phys. Fluids 24, 081702 (2012).

20p R. Spalart, R. D. Moser, and M. M. Rogers, “Spectral methods for the Navier-Stokes equations with one infinite and two
periodic directions,” J. Comput. Phys. 96, 297-324 (1991).

21'Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, “Energy dissipation rate and energy spectrum in high
resolution direct numerical simulations of turbulence in a periodic box,” Phys. Fluids 15, L21-L.24 (2003).

227.S. She, S. Chen, G. Doolen, R. H. Kraichnan, and S. A. Orszag, “Reynolds number dependence of isotropic Navier-Stokes
turbulence,” Phys. Rev. Lett. 70, 3251-3254 (1993).

2P, K. Yeung and Y. Zhou, “Universality of the Kolmogorov constant in numerical simulations of turbulence,” Phys. Rev. E
56, 17461752 (1997).

24K T. Christensen and R. J. Adrian, “The velocity and acceleration signatures of turbulent channel flow,” J. Turbulence 3,
N23 (2002).

251.. Chen, S. W. Coleman, J. C. Vassilicos, and Z. Hu, “Acceleration in turbulent channel flow,” J. Turbulence 11, N41
(2010).

263 J. H. Brouwers, “Eulerian short-time statistics of turbulent flow at large Reynolds number,” Phys. Fluids 16, 2300-2308
(2004).

7G. 1L Taylor, “The spectrum of turbulence,” Proc. R. Soc. London, Ser. A 164, 476—490 (1938).

283, Kim and F. Hussain, “Propagation velocity of perturbations in turbulent channel flow,” Phys. Fluids A 5, 695-705 (1993).

29]. C. del Alamo and J. Jiménez, “Estimation of turbulent convection velocities and corrections to Taylor’s approximation,”
J. Fluid Mech. 640, 5-26 (2009).

30H. Tennekes, “Eulerian and Lagrangian time microscales in isotropic turbulence,” J. Fluid Mech. 67, 561-567 (1975).

3P K. Yeung and S. B. Pope, “Lagrangian statistics from direct numerical simulations of isotropic turbulence,” J. Fluid
Mech. 207, 531-586 (1989).

32 A. Tsinober, P. Vedula, and P. K. Yeung, “Random Taylor hypothesis and the behavior of local and convective accelerations
in isotropic turbulence,” Phys. Fluids 13, 1974-1984 (2001).

338. Tavoularis, J. C. Bennett, and S. Corrsin, “Velocity-derivative skewness in small Reynolds number, nearly isotropic
turbulence,” J. Fluid Mech. 88, 63-69 (1978).

34H. Ueda and J. O. Hinze, “Fine-structure turbulence in the wall region of a turbulent boundary layer,” J. Fluid Mech. 67,
125-143 (1975).

35U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

36T, Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno, “Small-scale statistics in high-resolution direct numerical
simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics,” J. Fluid Mech. 592,
335-366 (2007).

37 A. Pumir, “A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic
turbulence,” Phys. Fluids 6, 2071-2083 (1994).

3P, Vedula and P. K. Yeung, “Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic
turbulence,” Phys. Fluids 11, 1208-1220 (1999).

39N. Cao, S. Chen, and G. D. Doolen, “Statistics and structures of pressure in isotropic turbulence,” Phys. Fluids 11,
2235-2250 (1999).


http://dx.doi.org/10.1063/1.1570830
http://dx.doi.org/10.2514/1.17638
http://dx.doi.org/10.1063/1.2722422
http://dx.doi.org/10.1063/1.3005862
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.023
http://dx.doi.org/10.1080/14685248.2012.726358
http://dx.doi.org/10.1017/S002211209200048X
http://dx.doi.org/10.1063/1.1761178
http://dx.doi.org/10.1006/jcph.1998.5962
http://dx.doi.org/10.1016/S0021-9991(03)00126-8
http://dx.doi.org/10.1006/jcph.1998.6050
http://dx.doi.org/10.1063/1.3663308
http://dx.doi.org/10.1063/1.4745857
http://dx.doi.org/10.1016/0021-9991(91)90238-G
http://dx.doi.org/10.1063/1.1539855
http://dx.doi.org/10.1103/PhysRevLett.70.3251
http://dx.doi.org/10.1103/PhysRevE.56.1746
http://dx.doi.org/10.1088/1468-5248/3/1/023
http://dx.doi.org/10.1080/14685248.2010.510842
http://dx.doi.org/10.1063/1.1737788
http://dx.doi.org/10.1098/rspa.1938.0032
http://dx.doi.org/10.1063/1.858653
http://dx.doi.org/10.1017/S0022112009991029
http://dx.doi.org/10.1017/S0022112075000468
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1063/1.1375143
http://dx.doi.org/10.1017/S0022112078001986
http://dx.doi.org/10.1017/S0022112075000201
http://dx.doi.org/10.1017/S0022112007008531
http://dx.doi.org/10.1063/1.868213
http://dx.doi.org/10.1063/1.869893
http://dx.doi.org/10.1063/1.870085

