Creating enriched environments for ageing adults

Kort, H.S.M.

Published in:
Gerontechnology

DOI:
10.4017/gt.2014.13.02.051.00

Published: 01/01/2014

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Creating enriched environments for ageing adults

H.S.M. KORT (Convener) Creating enriched environments for ageing adults. Gerontechnology 2014; 13(2):85; doi:10.4017/gt.2014.13.02.051.00 Participants H.S.M. Kort (Netherlands), E.R.C.M. Huisman (Netherlands), N.H.A.M. van Hout (Netherlands), S. Vorrink (Netherlands), and G. Wets (Belgium) Issue The world’s population is aging rapidly. More people have to continue working to an older age and they want to participate in society even after they have retired. New technologies support older adults in their efforts to reach emotional and intellectual fulfilment and to integrate into today’s society. The elderly in both developed and under-developed countries face a variety of challenges. The challenges include knowing how to stay healthy, how to live with chronic conditions, how to continue working and stay productive, how to age-in-place and how to commute safely to and from work. Content The International Classifications of Functioning, Disabilities and Health (ICF) model from the World Health Organization1 offers a workable frame to examine how environmental factors limit or support older people in these challenges. Environmental factors make up the physical, social and attitudinal environments in which people live. Some of these factors are related to physical challenges include: light (e240), time-related changes (e245), sound (e250), the design, construction and building of products and technology within buildings designed for private use (e155), air quality (e260) and products and technology designed to increase a person’s indoor and outdoor mobility and to provide methods of transportation (e120). The factors are used to identify facilitators and barriers in the environments of the elderly. Their identification offers the possibility of creating an enriched environment for aging adults. The symposium participants will discuss the work done within the Dutch-Flemish chapter of the ISG. Structure There will be a short introduction of four oral presentations, followed by a panel discussion. Two presentations will emphasize using daylight or acoustical interventions to create enriched care facilities for people with chronic conditions. The remaining presentations will emphasize how physical activity may contribute to social inclusion of older adults. Conclusion Varied and complex environmental factors affect the lives of aging adults. The presentations at the symposium will show that barriers to aging adults who are limited by their health conditions can be transformed in facilitators for those same adults. This can be done with building-related interventions related to environmental and physical factors as described in the ICF model. These insights will contribute to the design and development of products and services to create life-enriching environments.

References

Keywords: (day)light, acoustics, visual (dis)comfort, physical activity

Address: Utrecht University of Applied Sciences, Utrecht, Netherlands
E: helianthe.kort@hu.nl

E.R.C.M. HUISMAN, M.P.J. AARTS, P.L.W. KEMENADE, H.S.M. KORT. Quality of light in a long term care facility in the Netherlands. Gerontechnology 2014; 13(2):85-86; doi:10.4017/gt.2014.13.02.180.00 Purpose Several studies describe the importance of light for our physical and psychological well-being. Exposure to light can affect human experiences, performance, and physiology via both image-forming and non-image forming processes1. (Day)light is a key concept for life enrichment care facilities. ‘Life enrichment care’ is a concept based on healing environments, which targets long term care facilities (Ltcf) rather than hospitals. This concept focuses on the well-being and quality of life of frail elderly in Ltcf. Among Ltcf residents are often people who suffer from some form of dementia. For this group, the image-forming and non-image forming aspects of light play a role. The image-forming or visual aspects of light include the ability to perform daily tasks, and are related to the prevention of falls. The most important non-image forming aspect of light is light’s influence on controlling circadian rhythms, or the “biological clock”. Older adults with dementia often suffer from disturbances in circadian rhythm, which can lead to behavioral problems including nocturnal unrest5. This nocturnal unrest is mostly treated with sleep medication. However, in previous research, the emphasis was on light in general and electric lighting in specific. No clear distinction was made between electric lighting and daylight6. This study investigates the effect of (day)light on the